newff 创建前向BP网络格式:
net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
其中:PR —— R维输入元素的R×2阶最大最小值矩阵; Si —— 第i层神经元的个数,共N1层; TFi——第i层的转移函数,默认‘tansig’; BTF—— BP网络的训练函数,默认‘trainlm’; BLF—— BP权值/偏差学习函数,默认’learngdm’ PF ——性能函数,默认‘mse’;(误差)
e.g.
P = [0 1 2 3 4 5 6 7 8 9 10];T = [0 1 2 3 4 3 2 1 2 3 4];
net = newff([0 10],[5 1],{'tansig' 'purelin'});net.trainparam.show=50; %每次循环50次net.trainParam.epochs = 500; %最大循环500次
net.trainparam.goal=0.01; %期望目标误差最小值
net = train(net,P,T); %对网络进行反复训练
Y = sim(net,P)Figure % 打开另外一个图形窗口
plot(P,T,P,Y,'o')
『贰』 如何用代码编写一个神经网络异或运算器
配置环境、安装合适的库、下载数据集……有时候学习深度学习的前期工作很让人沮丧,如果只是为了试试现在人人都谈的深度学习,做这些麻烦事似乎很不值当。但好在我们也有一些更简单的方法可以体验深度学习。近日,编程学习平台 Scrimba 联合创始人 Per Harald Borgen 在 Medium 上发文介绍了一种仅用30行 JavaScript 代码就创建出了一个神经网络的教程,而且使用的工具也只有 Node.js、Synaptic.js 和浏览器而已。另外,作者还做了一个交互式 Scrimba 教程,也许能帮你理解其中的复杂概念。
Synaptic.js:http://synaptic.juancazala.com
Node.js:http://nodejs.org
Scrimba 教程:http://scrimba.com/casts/cast-1980
Synaptic.js 让你可以使用 Node.js 和浏览器做深度学习。在这篇文章中,我将介绍如何使用 Synaptic.js 创建和训练神经网络。
//创建网络const { Layer, Network }= window.synaptic;var inputLayer = new Layer(2);var hiddenLayer = new Layer(3);var outputLayer = new Layer(1);
inputLayer.project(hiddenLayer);
hiddenLayer.project(outputLayer);var myNetwork = new Network({
input: inputLayer,
hidden:[hiddenLayer],
output: outputLayer
});//训练网络——学习异或运算var learningRate =.3;for (var i =0; i <20000; i++)
{//0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}//测试网络console.log(myNetwork.activate([0,0]));//[0.0]console.log(myNetwork.activate([0,1]));//[0.]console.log(myNetwork.activate([1,0]));//[0.]console.log(myNetwork.activate([1,1]));//[0.0]
我们将创建一个最简单的神经网络:一个可以执行异或运算的网络。上面就是这个网络的全部代码,但在我们深入解读这些代码之前,首先我们先了解一下神经网络的基础知识。
神经元和突触
神经网络的基本构造模块是神经元。神经元就像是一个函数,有几个输入,然后可以得到一个输出。神经元的种类有很多。我们的网络将使用 sigmoid 神经元,它可以输入任何数字并将其压缩到0 到1 之间。下图就是一个 sigmoid 神经元。它的输入是5,输出是1。箭头被称为突触,可以将该神经元与网络中的其它层连接到一起。
现在训练这个网络:
// train the network - learn XORvar learningRate =.3;for (var i =0; i <20000; i++){ //0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}
这里我们运行该网络20000次。每一次我们都前向和反向传播4 次,为该网络输入4 组可能的输入:[0,0][0,1][1,0][1,1]。
首先我们执行 myNetwork.activate([0,0]),其中[0,0]是我们发送给该网络的数据点。这是前向传播,也称为激活这个网络。在每次前向传播之后,我们需要执行反向传播,这时候网络会更新自己的权重和偏置。
反向传播是通过这行代码完成的:myNetwork.propagate(learningRate,[0]),其中 learningRate 是一个常数,给出了网络每次应该调整的权重的量。第二个参数0 是给定输入[0,0]对应的正确输出。
然后,该网络将自己的预测与正确的标签进行比较,从而了解自己的正确程度有多少。
然后网络使用这个比较为基础来校正自己的权重和偏置值,这样让自己的下一次猜测更加正确一点。
这个过程如此反复20000次之后,我们可以使用所有四种可能的输入来检查网络的学习情况:
->[0.0]console.log(myNetwork.activate([0,1]));
->[0.]console.log(myNetwork.activate([1,0]));
->[0.]console.log(myNetwork.activate([1,1]));
->[0.0]
如果我们将这些值四舍五入到最近的整数,我们就得到了正确的异或运算结果。
这样就完成了。尽管这仅仅只碰到了神经网络的表皮,但也足以帮助你进一步探索 Synaptic 和继续学习了。http://github.com/cazala/synaptic/wiki 这里还包含了更多好教程。
『叁』 有没有用python实现的遗传算法优化BP神经网络的代码
下面是函数实现的代码部分:
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签
%样本数据就是前面问题描述中列出的数据
%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数
load data
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen
『肆』 matlab中用RBF神经网络做预测的代码怎么写
clc;
clearall;
closeall;
%%----
c_1=[00];
c_2=[11];
c_3=[01];
c_4=[10];
n_L1=20;%numberoflabel1
n_L2=20;%numberoflabel2
A=zeros(n_L1*2,3);
A(:,3)=1;
B=zeros(n_L2*2,3);
B(:,3)=0;
%createrandompoints
fori=1:n_L1
A(i,1:2)=c_1+rand(1,2)/2;
A(i+n_L1,1:2)=c_2+rand(1,2)/2;
end
fori=1:n_L2
B(i,1:2)=c_3+rand(1,2)/2;
B(i+n_L2,1:2)=c_4+rand(1,2)/2;
end
%showpoints
scatter(A(:,1),A(:,2),[],'r');
holdon
scatter(B(:,1),B(:,2),[],'g');
X=[A;B];
data=X(:,1:2);
label=X(:,3);
%%Usingkmeanstofindcintervector
n_center_vec=10;
rng(1);
[idx,C]=kmeans(data,n_center_vec);
holdon
scatter(C(:,1),C(:,2),'b','LineWidth',2);
%%Calulatesigma
n_data=size(X,1);
%calculateK
K=zeros(n_center_vec,1);
fori=1:n_center_vec
K(i)=numel(find(idx==i));
end
%
%thencalucatesigma
sigma=zeros(n_center_vec,1);
fori=1:n_center_vec
[n,d]=knnsearch(data,C(i,:),'k',K(i));
L2=(bsxfun(@minus,data(n,:),C(i,:)).^2);
L2=sum(L2(:));
sigma(i)=sqrt(1/K(i)*L2);
end
%%Calutateweights
%kernelmatrix
k_mat=zeros(n_data,n_center_vec);
fori=1:n_center_vec
r=bsxfun(@minus,data,C(i,:)).^2;
r=sum(r,2);
k_mat(:,i)=exp((-r.^2)/(2*sigma(i)^2));
end
W=pinv(k_mat'*k_mat)*k_mat'*label;
y=k_mat*W;
%y(y>=0.5)=1;
%y(y<0.5)=0;
%%
[W1,sigma1,C1]=RBF_training(data,label,10);
y1=RBF_predict(data,W,sigma,C1);
[W2,sigma2,C2]=lazyRBF_training(data,label,2);
y2=RBF_predict(data,W2,sigma2,C2);
(4)神经网络代码扩展阅读
matlab的特点
1、具有完备的图形处理功能,实现计算结果和编程的可视化;
2、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;
3、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
『伍』 求预测一组数据的bp神经网络模型的matlab代码
用matlab求预测一组数据的bp神经网络模型,可以分
1、给定已经数据,作为一个原始序列;
2、设定自回归阶数,一般2~3,太高不一定好;
3、设定预测某一时间段
4、设定预测步数
5、用BP自定义函数进行预测
6、根据预测值,用plot函数绘制预测数据走势图
其主要实现代码如下:
clc
% x为原始序列(行向量)
x=[208.72 205.69 231.5 242.78 235.64 218.41];
%x=[101.4 101.4 101.9 102.4 101.9 102.9];
%x=[140 137 112 125 213 437.43];
t=1:length(x);
% 自回归阶数
lag=3;
%预测某一时间段
t1=t(end)+1:t(end)+5;
%预测步数为fn
fn=length(t1);
[f_out,iinput]=BP(x,lag,fn);
P=vpa(f_out,5);
A=[t1' P'];
disp('预测值')
disp(A)
% 画出预测图
figure(1),plot(t,iinput,'bo-'),hold on
plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on
title('BP神经网络预测某地铁线路客流量')
xlabel('月号'),ylabel('客流量(百万)');
运行结果:
『陆』 如何用python和scikit learn实现神经网络
1:神经网络算法简介
2:Backpropagation算法详细介绍
3:非线性转化方程举例
4:自己实现神经网络算法NeuralNetwork
5:基于NeuralNetwork的XOR实例
6:基于NeuralNetwork的手写数字识别实例
7:scikit-learn中BernoulliRBM使用实例
8:scikit-learn中的手写数字识别实例
一:神经网络算法简介
1:背景
以人脑神经网络为启发,历史上出现过很多版本,但最著名的是backpropagation
2:多层向前神经网络(Multilayer Feed-Forward Neural Network)