『壹』 车联网包含哪些技术
车联网关键技术
1、射频识别技术
射频识别(radio frequency identification,RFID)技术是通过无线射频信号实现物体识别的一种技术,具有非接触、双向通信、自动识别等特征,对人体和物体均有较好的效果。RFID不但可以感知物体位置,还能感知物体的移动状态并进行跟踪。RFID定位法目前已广泛应用于智能交通领域,尤其是车联网技术中更是对RFID技术有强烈的依赖,成为车联网体系的基础性技术。RFID技术一般与服务器、数据库、云计算、近距离无线通信等技术结合使用,由大量的RFID通过物联网组成庞大的物体识别体系。
2、传感网络技术
车辆服务需要大量数据的支持,这些数据的原始来源正是由各类传感器进行采集。不同的传感器或大量的传感器通过采集系统组成一个庞大的数据采集系统,动态采集一切车联网服务所需要的原始数据,例如车辆位置、状态参数、交通信息等。当前传感器已由单个或几个传感器演化为由大量传感器组成的传感器网络,并且通能够根据不同的业务进行处性化定制。为服务器提供数据源,经过分析处理后作为各项业务数据为车辆提供优质服务。
3、卫星定位技术
随着全球定位技术的发展,车联网的发展迎来了新的历史机遇,传统的GPS系统成为了车联网技术的重要技术基础,为车辆的定位和导航提供了高精度的可靠位置服务,成为车联网的核心业务之一。随着我国北斗导航系统的日益完善并投入使用,车联网技术又有了新的发展方向,并逐步实现向国产化、自主知识产权的时期过渡。北斗导航系统将成为我国车联网体系的核心技术之一,成为车联网核心技术自主研发的重要开端。
4、无线通信技术
传感网络采集的少量处理需要通信系统传输出云才能得到及时的处理和分析,分析后的数据也要经过通信网络的传输才能到达车辆终端设备。考虑到车辆的移动特性,车联网技术只能采用无线通信技术来进行数据传输,因此无线通信技术是车联网技术的核心组成部分之一。在各种无线传输技术的支持下,数据可以在服务器的控制下进行交换,实现业务数据的实时传输,并通过指令的传输实现对网内车辆的实时监测和控制。
5、大数据分析技术
大数据(Big Data)是指借助于计算机技术、互联网,捕捉到数量繁多、结构复杂的数据或信息的集合体。在计算机技术和网络技术的发展推动下,各种大数据处理方法已经开始得到广泛的应用。常见的大数据技术包括信息管理系统、分布式数据库、数据挖掘、类聚分析等,成为不断推动大数据在车联网中应用的强大驱动力。
6、标准及安全体系
车联网作为一个庞大的物联网应用系统,包含了大量的数据、处理过程和传输节点,其高效运行必须有一套统一的标准体系来规范,从而确保数据的真实性和完整性,完成各项业务的应用。标准化已成为车联网技术发展的迫切要求,也是一项复杂的管理技术。另外,车辆联网和获取服务本身也是为了更好地为车辆安全行驶提供保障,因此安全体系的建立也十分重要。能否根据当前车联网发展情况,建立一套高效的标准和安全体系,已经成为决定未来车联网技术发展的关键因素。
『贰』 什么是无线传感器网络
无线传感器的无线传输功能,常见的无线传输网络有RFID、ZigBee、红外版、蓝牙、GPRS、4G、2G、Wi-Fi、NB-IoT。权
与传统有线网络相比,无线传感器网络技术具有很明显的优势特点,主要的要求有: 低能耗、低成本、通用性、网络拓扑、安全、实时性、以数据为中心等。
『叁』 无线传感器网络体系结构包括哪些部分,各部分的
结构
传感器网络系统通常包括传感器节点EndDevice、汇聚节点Router和管理节点Coordinator。
大量传感器节点随机部署在监测区域内部或附近,能够通过自组织方式构成网络。传感器节点监测的数据沿着其他传感器节点逐跳地进行传输,在传输过程中监测数据可能被多个节点处理,经过多跳后路由到汇聚节点,最后通过互联网或卫星到达管理节点。用户通过管理节点对传感器网络进行配置和管理,发布监测任务以及收集监测数据。
传感器节点
处理能力、存储能力和通信能力相对较弱,通过小容量电池供电。从网络功能上看,每个传感器节点除了进行本地信息收集和数据处理外,还要对其他节点转发来的数据进行存储、管理和融合,并与其他节点协作完成一些特定任务。
汇聚节点
汇聚节点的处理能力、存储能力和通信能力相对较强,它是连接传感器网络与Internet 等外部网络的网关,实现两种协议间的转换,同时向传感器节点发布来自管理节点的监测任务,并把WSN收集到的数据转发到外部网络上。汇聚节点既可以是一个具有增强功能的传感器节点,有足够的能量供给和更多的、Flash和SRAM中的所有信息传输到计算机中,通过汇编软件,可很方便地把获取的信息转换成汇编文件格式,从而分析出传感节点所存储的程序代码、路由协议及密钥等机密信息,同时还可以修改程序代码,并加载到传感节点中。
管理节点
管理节点用于动态地管理整个无线传感器网络。传感器网络的所有者通过管理节点访问无线传感器网络的资源。
无线传感器测距
在无线传感器网络中,常用的测量节点间距离的方法主要有TOA(Time of Arrival),TDOA(Time Difference of Arrival)、超声波、RSSI(Received Sig nalStrength Indicator)和TOF(Time of Light)等。
『肆』 传感器网络的特点有哪些
传感器网络的特点有紧密性,敏感性,互通性 。
传感器网络,是由许多在空间上分布的自动装置组成的一种计算机网络,这些装置使用传感器协作地监控不同位置的物理或环境状况(比如温度、声音、振动、压力、运动或污染物)。
无线传感器网络的发展最初起源于战场监测等军事应用。而现今无线传感器网络被应用于很多民用领域,如环境与生态监测、健康监护、家庭自动化、以及交通控制等。
所谓传感器网络是由大量部署在作用区域内的、具有无线通信与计算能力的微小传感器节点通过自组织方式构成的能根据环境自主完成指定任务的分布式智能化网络系统。
传感器网络特点
传感网络的节点间距离很短,一般采用多跳的无线通信方式进行通信。传感器网络可以在独立的环境下运行,也可以通过网关连接到Internet,使用户可以远程访问。
传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息。
通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。从而真正实现“无处不在的计算”理念。
以上内容参考:网络-传感器网络
『伍』 传感网是干啥的
传感网的定义为随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的无线网络。
微小节点,通过自组织的方式构成的无线网络。
目录传感网功能中国传感网无线传感网传感网与物联网展开传感网功能中国传感网无线传感网传感网与物联网展开
编辑本段传感网功能借助于节点中内置的传感器测量周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大
无线传感网节点状态切换示意图
小、速度和方向等物质现象。
以互联网为代表的计算机网络技术是
二十世纪计算机科学的一项伟大成果,它给我们的生活带来了深刻的变化,然而在目前,网络功能再强大,网络世界再丰富,也终究是虚拟的,它与我们所生活的现
实世界还是相隔的,在网络世界中,很难感知现实世界,很多事情还是不可能的,时代呼唤着新的网络技术。传感网络正是在这样的背景下应运而生的全新网络技
术,它综合了传感器、低功耗、通讯以及微机电等等技术,可以预见,在不久的将来,传感网络将给我们的生活方式带来革命性的变化。
无线传感网起源无线传感网络技术是典型的具有交叉学科性质的军民两用战略高技术,可以广泛应用于国防军事、国家安全、环境科学、交通管理、灾害预测、医疗卫生、制造业、城市信息化建设等领域。无线传感器网络(WSNs)是由许许多多功能相同或不同的无线传感器节点组成,每一个传感器节点由数据采集模块(传感器、A/D转换器)、数据处理和控制模块(微处理器、存储器)、
通信模块(无线收发器)和供电模块(电池、DC/AC能量转换器)等组成。近期微电子机械加工技术的发展为传感器的微型化提供了可能,微处理技术的发展促
进了传感器的智能化,通过MEMS技术和射频(RF)通信技术的融合促进了无线传感器及其网络的诞生。传统的传感器正逐步实现微型化、智能化、信息化、网
络化,正经历着一个从传统传感器(Dumb Sensor)→智能传感器(Smart Sensor)→嵌入式Web传感器(Embedded Web
Sensor)的内涵不断丰富的发展过程。分类国际上比较有代表性和影响力的无线传感网络实
用和研发项目有遥控战场传感器系统(Remote Battlefield Sensor System,简称 REMBASS
--伦巴斯)、网络中心战(NCW)及灵巧传感器网络(SSW))、智能尘(smart st)、Intel?Mote、Smart
-Its项目、SensIT、SeaWeb、行为习性监控(Habitat Monitoring)项目、英国国家网格等。尤其是今年最新试制成功的低成本美军“狼群”地面无线传感器网络标志着电子战领域技战术的最新突破。俄亥俄州正在开发“沙地直线”(A Line in the Sand)无线传感器网络系统。这个系统能够散射电子绊网(tripwires)到任何地方,以侦测运动的高金属含量目标。民用方面,美日等发达国家在对该技术不断研发的基础上在多领域进行了应用。转折点英特尔与加利福尼亚州大学伯克利分校正领导着微尘技术的研究工作。他们成功创建了瓶盖大小的全功能传感器,可以执行计算、检测与通信等功能。2002年,英特尔研究实验室研究人员将处方药瓶大小的32个传感器连进互联网,以读出缅因州“大
鸭岛”上的气候,评价一种海燕巢的条件。而2003年第二季度,他们换用150个安有D型微型电池的第二代传感器,来评估这些鸟巢的条件。他们的目的是让
世界各国研究人员实现无入侵式及无破坏式的、对敏感野生动物及其栖居地的监测。该公司开发出了用于家庭护理的无线传感器网络系统。根据演示,试制系统通过
在鞋、家具,以及家用电器中嵌入半导体传感器,帮助老年人、阿尔茨海默氏病患者,以及残障人士的家庭生活。该系统利用无线通信将各传感器联网,可高效传递必要的信息,从而方便病人接受护理,还可以减轻护理人员的负担。该无线传感器网络系统是英特尔公司在阿尔茨海默氏病患者家庭的合作下,历时一年研究完成的,2004年下半年开始试用。
日立制作所与YRP泛在网络化研究所2004年11月24日宣布开发出了全球体积最小的传感器网络终端。该终端为安装电池的有源无线终端,可以搭载温度、亮度、红外线、加速度等各种传感器。设想应用于大楼与家庭的无线传感器以及安全管理方面。
三菱电机日前开发成功了一种设想用于传感器网络的小型低耗电无线模块。能够使用特定小功率无线构筑对等(Ad-hoc)网络。目标是取代目前利用专线构筑的家用安全网络,计划2005年~2006年达到实用水平。具体而言,与红外线传感器配合,检测是否有人、与加速度传感器配合,检测窗玻璃和家具的振动、与磁传感器配合,检测门的开关,等等。
在旧金山,200
个联网微尘已被部署在金门大桥。这些微尘用于确定大桥从一边到另一边的摆动距离—可以精确到在强风中为几英尺。当微尘检测出移动距离时,它将把该信息通过
微型计算机网络传递出去。信息最后到达一台更强大的计算机进行数据分析。任何与当前天气情况不吻合的异常读数都可能预示着大桥存在隐患。骄傲我国现代意义的无线传感网及其应用研究几乎与发达国家同步启动,1999年首次正式出现于中国科学院《知识创新工程试点领域方向研究》的信息与自动化领域研究报告中,作为该领域提出的五个重大项目之一。随着知识创新工程试点工作的深入,2001年中科院依托上海微
系统所成立微系统研究与发展中心,引领院内的相关工作,并通过该中心在无线传感网的方向上陆续部署了若干重大研究项目和方向性项目,参加单位包括上海微系
统所、声学所、微电子所、半导体所、电子所、软件所、中科大等十余个校所,初步建立传感网络系统研究平台,在无线智能传感网络通信技术、微型传感器、传感器节点、簇点和应用系统等方面取得很大的进展,2004年9月相关成果在北京进行了大规模外场演示,部分成果已在实际工程系统中使用。国内的许多高校也掀起了无线传感器网络的研究热潮。清华大学、中国科技大学、浙江大学、华中科技大学、天津大学、南开大学、北京邮电大学、东北大学、西北工业大学、西南交通大学、沈阳理工大学和上海交通大学等单位纷纷开展了有关无线传感器网络方面的基础研究工作。一些企业如中兴通讯公司等单位也加入无线传感器网络研究的行列。应用传感网[1]在民用方面,涉及城市公共安全、公共卫生、安全生产、智能交通、智能家居、环境监控等领域。国内从事传感网应用的大企业目前为数不多,小企业呈现蓬勃发展的势头。北京鼎天软件有限公司,主要从事城市公共安全应急指挥系统建设,已经承担扬州电子政务和扬州应急指挥系统。上海电器科学研究院主要从事智能交通方面的工程,已经承担上海市内、外环智能交通工程。嘉兴中科无线传感网科技有限公司在数字航道、城市应急系统、机场监控等方面有较好的技术背景,相关项目工程正在进行中。沈阳东软、北大青鸟、亿阳信通等企业也在传感网应用方面有所涉足,目前主要在电子政务方面,正在向公共安全应急指挥系统进发。
『陆』 传感网技术的发展历程
早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。
随着相关学科的的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理 能力的传感器网络,这是第二代传感器网络。
从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器 网络逐渐形成。无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。发达国家如 美国,非常重视无线传感器网络的发展。
美国交通部1995年提出了“国家智能交通系统项目规划”,预计到2025年全面投入使用。该计划试图有效集成先进的信息技术、数据通信技术、 传感器技术、控制技术及计算机处理技术并运用于整个地面交通管理,建立一个大范围全方位的实时高效的综合交通运输管理系统。这种新型系统将有效地使用传感 器网络进行交通管理。
美国陆军2001年就提出了“灵巧传感器网络通信”计划,在2001-2005财政年度期间批准实施。其基本思想是:在战场上布设大量的传感器 以收集和传输信息,并对相关原始数据进行过滤,然后再把那些重要的信息传送到各数据融合中心,将大量的信息集成为一幅战场全景图。当参战人员需要时可分发 给他们,使其对战场态势的感知能力大大提高。
2002年5月,美国Sandia国家实验室与美国能源部合作,共同研究能够尽早发现以地铁、车站等场所为目标的生化武器袭击,并及时采取防范 对策的系统。它属于美国能源部恐怖对策项目的重要一环。该系统集检测有毒气体的化学传感器和网络技术于一体。
美国自然科学基金委员会2003年制定了无线传感器网络研究计划,在加州大学洛杉矶分校成立了传感器网络研究中心,联合周边的加州大学伯克利分 校、南加州大学等,展开“嵌入式智能传感器”的研究项目。
英特尔公司在2002年10月24日发布了“基于微型传感器网络的新型计算发展规划”。计划宣称,英特尔将致力于微型传感器网络在预防医学、环 境监测、森林灭火乃至海底板块调查、行星探查等领域的应用。
我国在国家“十一五”规划和《国家中长期科技发展纲要》中将“传感器网络及信息处理”列入其中,国家863、973计划中也将WSN列为支持项目。
『柒』 什么是无线传感技术
科技发展的脚步越来越快,人类已经置身于信息时代。作为信息获取的一种重要、基本的技术——传感器技术,也得到了极大的发展。无线传感器网络是一种全新的信息获取和处理技术,传感器节点可以连续不断地进行数据采集、事件检测、事件标识、位置监测和节点控制,传感器节点的这些特性和无线连接方式使得无线传感器网络的应用前景非常广阔,随着无线传感器网络的深人研究和广泛应用,无线传感器网络将逐渐深入到人类生活的各个领域。传感器信息获取技术已经从过去的单一化渐渐向集成化、微型化和网络化方向发展,并将会带来一场信息革命。
【关键词】:信息时代、传感器技术、无线连接、信息革命
1引言
无线传感器网络(WSN, Wireless Sensor Net-work )综合了传感器技术、嵌入式计算技术、分布式信息处理技术和通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的信息,传送到需要这些信息的用户。
无线传感器网络被认为是21世纪最重要的技术之一,它将会对人类未来的生活方式产生深远影响。本文将先介绍无线传感器网络的概念和特点,再探讨WSN在人们生活中的一些应用模型以及在发展中所遇到的一些问题。
2无线传感器网络
2.1无线传感器网络简介
无线传感器网络(Wireless Sensor Network,WSN)是由许多个功能相同或不同的无线传感器节点通过自组织方式形成的无线网络。每个传感器节点由数据采集模块(传感器、A/D转换器)、数据处理和控制模块(微处理器、存储器)、通信模块(无线收发器)以及供电模块(电池、DC/DC能量转换器)等组成。节点在网络中可以充当数据采集者、数据中转站或簇头节点(cluster-head node)的角色。作为数据采集者,数据采集模块收集周围环境的数据(如温度和湿度),通过通信路由协议直接或间接将数据传输给远方基站(base station)或汇节点(sink node);作为数据中转站,节点除了完成采集任务外,还要接收邻居节点的数据,并将其转发到距离基站最近的邻居节点或者直接转发到基站或汇节点,簇头节点负责收集该类内所有节点采集的数据,经数据融合后,发送到基站或汇节点。这些传感器节点可以任意地部署在监测区域内,彼此通过无线通信形成一个多跳的、自组织的网络来完成信息采集、数据传输和信息处理。无线传感器网络通过节点的数据采集和传输,可以在任何时间、任何地点获取对象的信息,对环境的变化具有很强的鲁棒性,因此它具有广泛的应用前景,可以应用于军事情报侦察、工业生产过程控制、环境监测和保护以及现代化交通管理等领域。
2.2无线传感器网络的节点结构及网络体系结构
网络体系结构是网络的协议分层以及网络协议的集合,是对网络及其部件所应完成功能的定义和描述,对无线传感器网络来说,其网络体系结构不同于传统的计算机网络和通信网络。网络体系结构由分层的网络通信协议、传感器网络管理以及应用支撑技术三部分组成。
2.2.1 传感器网络节点结构
传感器网络节点的基本组成包括如下4个基本单元:传感单元(由传感器和模数转换功能模块组成)、处理单元(包括CPU、存储器、嵌入式操作系统等)、通信单元(由无线通信模块组成)以及电源。此外,可以选择的其他功能单元包括:定位系统、移动系统以及电源自供电系统等。
2.2.2 传感器网络的体系结构
网络体系结构是网络的协议分层以及网络协议的集合,是对网络及其部件所应完成功能的定义和描述,对无线传感器网络来说,其网络体系结构不同于传统的计算机网络和通信网络。网络体系结构由分层的网络通信协议、传感器网络管理以及应用支撑技术三部分组成。分层的网络通信协议结构类似于TCP/IP协议体系结构;传感器网络管理技术主要是对传感器节点自身的管理以及用户对传感器网络的管理;在分层协议和网络管理技术的基础上,支持了传感器网络的应用支撑技术。
2.3无线传感器网络的物理组成
无线传感器网络的传感器节点个数通常很多,它们不仅体积小、成本低,另外还要求传感器节点功耗非常低,以满足用电池即可维持长时间的工作状态。因此这些特点决定了对传感器节点的设计需要在尽可能简单的情况下满足应用需求。无线传感器节点是由硬件层与软件层的配合完成任务。
2.3.1 无线传感器硬件层
硬件层一般都包括以下四个单元:供电单元、数据采集单元(包括传感器和A/D模数转换器件)、数据处理单元(包括存储器和微控制器)、无线通信单元。微控 制器作为传感器节点运“心脏”,在上面运行着嵌入式系统软件,从而对另外三个单元的工作进行控制。在硬件的选取上,尽量采用低功耗器件,还可以考虑在无数 据采集和无数据通信的时候命令微控制器进入“睡眠”状态并可切断无线通信单元的部分电源,从而降低功耗。
2.3.2 无线传感器软件层
无线传感器网络的软件层包括三个层次:硬件抽象层、系统服务层和应用层。硬件抽象层用来实现对硬件平台(供电、数据采集、数据处理和无线通信单元)的抽象,为上层屏蔽底层硬件细节,简化系统平台移植。系统服务层包括通信服务、传感服务、能耗管理服务、实时内核等四部分,在这个层次中除了实现操作系统如任务调度、信号量等内核服务外,还将完成各种路由、安全算法的实现,并支持各类通信传输协议。应用层是由用户根据具体应用的需要定义,利用系统服务层提供的接口,能方便的设计出上层软件。
软件层用来控制硬件层,是整个传感器的“大脑”,除了最基本的数据采集和发送之外,根据应用的场合,还需要实现关于网络拓扑、自组织、路由选择、能耗节 约、错误处理、可靠性保证等一系列的算法与设计。对于一些简单的应用可以使用单一循环逻辑的软件来完成。而一些复杂性较高的应用场景就有必要使用针对无线传感器网络特点的嵌入式操作系统。。
2.4 无线传感器网络主要特点 1.自组织网络
在无线传感器网络应用中,通常情况下传感器节点被放置在没有基础设备的地方。传感器节点的位置不能预先精确设定。节点之间的相互邻居关系也不能预先知道,如通过飞机撒播大量传感器节点在面积广大的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。在无线传感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些传感器节点为了弥补失效节点、增加监测精度而补充到网络中,这样在无线传感器网络中的节点个数就动态的增加或减少,从而使网络的拓扑结构随之动态变化。无线传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。
2.多跳路由
网络中节点通信距离有限,一般在几十到几百米范围内,节点只能与它的邻居直接通信。如果希望与其射频覆盖范围之外的节点进行通信,则需要通过中间节点进行路由。拟定网络的多跳路由使用网关和路由器来实现,而无线传感器网络中的多跳路由是由普通网络节点完成的,没有专门的路由设备。这样每个节点既可以是信息的发起者,也可以是信息的转发者。
3.动态网络拓扑
无线传感器网络是一个动态的网络,节点可以随处移动;一个节点可能会因为电池能量耗尽或其他故障,退出网络运行;一个节点也可能由于工作的需要而被添加到网络中。在某些特殊的应用中,无线传感器网络是移动的,传感器节点可能会因能量消耗完或其他故障而终止工作,这些因素都会使网络拓扑发生变化。
4.以数据为中心的网络
传感器网络是一个任务型的网络,脱离传感器网络谈论传感器节点没有任何意义。传感器网络中的节点采用编号标识,节点编号是否需要全网唯一取决于网络通信协议的设计。由于传感器节点随机部署,构成的传感器与节点编号之间的关系是完全动态的,表现为节点编号与节点位置没有必然联系。用户使用传感器网络查询事件时,直接将所关心的事件通告给网络,而不是通告给某个确定编号的节点。网络在获得指定事件的信息后汇报给用户。这种以数据本身作为查询或者传输线索的思想更接近于自然语言交流的习惯。所以通常说传感器是一个以数据为中心的网络。
2.5 无线传感器网络的发展现状
早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。
近年来,无线通信技术和微电子技术的不断进步,大大地推动了无线传感器网络的迅猛发展。无线传感器网络是任意部署在一定地理范围内的大量体积微小的传感器节点所组成的自组织网络。这些微小的节点具有数据采集,信号处理和无线通信等功能,彼此通过无线通信,相互协调形成一个智能的传感网络。无线传感器网络通过节点的数据采集和传输,可以在任何时间,任何地点获取对象的信息,对环境的变化具有很强的鲁棒性。因此,通过合理的节点部署和网络设计,无线传感器网络能够在危险,恶劣的环境中执行任务,比如敌方军事报侦察。但是,由于节点本身设计制造成本低,体积微小的特点,单个节点只能携带有限的能量,进行简单的局部信号处理及短距离的无线通信。因此,如何设计高效的分布式信号处理算法以降低网络中能量和带宽的消耗已成为当前无线传感器网络研究的热点问题之一。
3 无线传感器网络的关键技术
无线传感器网络作为当今信息领域新的研究热点,有非常多的关键技术有待发现和研究。而功耗和安全问题对于无线传感器网络来说,是两个最重要的性能指标,所以WSN的关键技术必然以降低网络功耗和确保网络安全为主线。下面介绍网络拓扑控制、数据融合等部分关键技术。
3.1网络拓扑控制
对于自组织的传感器网络而言,网络拓扑控制具有特别重要的意义。通过拓扑控制自动生成的良好的网络拓扑结构,能够提高路由协议和MAC协议的效率,可为数据融合、目标定位等很多方面奠定基础,有利于节省节点的能量来延长网络的生存期。所以,拓扑控制是WSN研究的核心技术之一。WSN拓扑控制目前主要研究的问题是在满足网络覆盖度和连通度的前提下,通过功率控制和骨干网节点选择,剔除节点之间不必要的无线通信链路,生成一个高效的数据转发的网络拓扑结构。拓扑控制分为节点功率控制和层次型拓扑结构控制两个方面。功率控制机制调节网络中每个节点的发射功率,在满足网络连通度的前提下,减少节点的发送功率,均衡节点单跳可达的邻居数目;目前已经提出了以邻居节点度为参考依据的算法,以及利用邻近图思想生成拓扑结构的DRNG和DLSS算法。层次型的拓扑控制利用分簇机制,让一些节点作为簇头,由簇头形成一个处理并转发数据的骨干网,其他非骨干网节点可以暂时关闭通信模块,进入休眠状态以节省能量。
3.2 数据融合
在无线传感器网络中,节点传感器采集数据并将它发送到网络终端。但是在数据的采集和传输过程中,总要对采集的数据进行处理,因此存在如何对采集的数据进行处理、融合的问题。
如果完全在本地节点上处理采集的数据而只发送处理后的结果,可以降低传输数据的功耗,但增加了本地节点处理器的功耗;如果传输原始采集的数据,可以降低节点处理器的功耗但增加了节点传输数据的功耗。因此,如何对采集的数据进行处理与融合对降低节点能耗起到相当大的作用。通常网络中的传感器数量很多,传感器采集的数据具有一定的冗余度,因此将多个节点采集的数据相互结合起来进行处理可以降低整个网络数据的传输量,有效降低系统功耗,问题是如何寻找本地节点处理与节点联合处理的平衡点。
3.3 定位技术
位置信息是传感器节点采集数据中不可缺少的部分,没有位置信息的监测消息通常毫无意义。为了提供有效位置信息,随机部署的传感器节点必须能够在布置后确定自身位置。由于传感器节点存在资源有限、随机部署、通信易受环境干扰甚至节点失效等特点,定位机制必须满足自组织性、健壮性、能量高效、分布式计算等要求。现有的WSN定位算法根据定位机制的不同,可以分为基于测距的方法与不基于测距的方法两类。基于测距的定位机制利用到达时间延迟、信号到达时差和接收信号强度来估计距离或来波方向,然后使用三边测量法或最大似然估计等计算未知节点的位置。而不基于测距的定位机制无需距离或角度信息,或者不用直接测量这些信息,仅根据网络的连通性等信息实现节点的定位。距离无关的定位机制的定位性受环境因素的影响小,虽然定位误差相应有所增加,但定位精度能够满足多数传感器网络应用的需求,是目前大家重点关注的定位机制。
3.4 无线通信技术
传感器网络需要低功耗短距离的无线通信技术。IEEE802.15.4标准是针对低速无线个人域网络的无线通信标准,把低功耗、低成本作为设计的主要目标。由于IEEE802.15.4标准的网络特征与无线传感器网络存在很多相似之处,故很多研究机构把它作为无线传感器网络的无线通信平台。另外,超宽带无线通信以其高速率、低功耗、抗多径、低成本等诸多优势,已成为室内短距离无线网络的首选方案,这为WSN的数据传输开辟了一种崭新的方案。
3.5 时间同步
传感器网络中由于节能策略,节点在大部分时间是休眠的,所以要求解决通信同步问题,即通信节点双方需要在通信时同时唤醒。另外,传感器网络是一个分布式网络,所有节点在通信上地位对等,没有优先级可言。所以要让整个网络能够工作在有效状态,往往需要做到全网或者一定范围内所有节点的同步,而不是通信双方的简单同步。
4 无线传感器网络的应用
虽然无线传感器网络的大规模商业应用,由于技术等方面的制约还有待时日,但是最近几年,随着计算成本的下降以及微处理器体积越来越小,已经为数不少的无线传感器网络开始投入使用。目前无线传感器网络的应用主要集中在以下领域:
4.1 环境的监测和保护
随着人们对于环境问题的关注程度越来越高,需要采集的环境数据也越来越多,无线传感器网络的出现为随机性研究数据的获取提供了便利,并且还可以避免传统数据收集方式给环境带来的侵入式破坏。比如,英特尔研究实验室研究人员曾经将32个小型传感器连进互联网,以测出缅因州"大鸭岛"上气候的变化情况,用来评价一种海燕巢的条件。无线传感器网络还可以跟踪候鸟和昆虫的迁移,研究环境变化对农作物的影响,监测海洋、大气和土壤的成分等。
4.2 医疗护理
无线传感器网络在医疗研究、护理领域也可以大展身手。罗彻斯特大学的科学家使用无线传感器创建了一个智能医疗房间,使用微尘来测量居住者的重要征兆(血压、脉搏和呼吸)、睡觉姿势以及每天24小时的活动状况。英特尔公司也推出了无线传感器网络的家庭护理技术,该技术是作为探讨应对老龄化社会的技术项目Center for Aging Services Technologies(CAST)的一个环节开发的。该系统通过在鞋、家具以家用电器等家中道具和设备中嵌入半导体传感器,帮助老龄人士、阿尔茨海默氏病患者以及残障人士的家庭生活。利用无线通信将各传感器联网可高效传递必要的信息从而方便接受护理,而且还可以减轻护理人员的负担。英特尔主管预防性健康保险研究的董事EricDishman称,"在开发家庭用护理技术方面,无线传感器网络是非常有前途的领域"。
4.3 军事领域
由于无线传感器网络具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境中,使其非常适合应用于恶劣的战场环境中,包括侦察敌情、监控兵力、装备和物资,判断生物化学攻击等多方面用途。美国国防部远景计划研究局已投资几千万美元,帮助大学进行"智能尘埃"传感器技术的研发。哈伯研究公司总裁阿尔门丁格预测:智能尘埃式传感器及有关的技术销售将从2004年的1000万美元增加到2010年的几十亿美元。
4.4 建筑结构监测
无线传感器网络用于监测建筑物的健康状况,不仅成本低廉,而且能解决传统监测布线复杂、线路老化、易受损坏等问题。斯坦福大学提出了基于无线传感器网络的建筑物监测系统,采用基于分簇结构的两层网络系统,传感器节点由EVK915模块和ADXL210加速度传感器构成,分簇首节点由Proxim Rangel LAN2无线调制器和EVK915连接而成。南加州大学的一种监测建筑物的无线传感器网络系统NETSHM,该系统除了监测建筑物的健康状况外,并且能够定位出建筑物受损伤的位置。
4.5 自然灾害的预防
在一些容易发生泥石流、滑坡等自然灾害的地方,使用无线传感网络及时、长期地对这些地方的地形变化、各种环境因素的监测,采集相关数据并进行适当的分析,当灾难将要发生时,我们就可以提前发出预警报告以做好准备或采取相应措施防止它们进一步的发生。
4.6 企业、家庭监控
在企业、家庭布设无线传感网络,可以实时地监控人员的流动和环境的变化,有利于企业、家庭采取有效的安全防护措施和灾难应变措施。此外,国内还出现了大量的其他领域的应用,比如无线传感网络在地下无人采煤安全监测系统的应用,无线传感网络在温室网络信息采集分析系统中的应用。
5.存在的问题
5.1 面临的技术难题
就目前无线传感器网络的技术水平来说,无线传感器网络正常运行并大量投入使用还面临着许多问题:
(1)网络内通信问题
无线传感器网络内正常通信联系中,信号可能被一些障碍物或其他电子信号干扰而受到影响,怎么安全有效的进行通信是个有待研究的问题。
(2)成本问题
在一个无线传感器网络里面,需要使用数量庞大的微型传感器,这样的话成本会制约其发展。
(3)系统能量供应问题
目前主要的解决方案有:使用高能电池;降低传感功率;此外还有传感器网络的自我能量收集技术和电池无线充电技术,其中后两者备受关注。
(4)高效的无线传感器网络结构
无线传感器网络的网络结构是组织无线传感器的成网技术,有多种形态和方式,合理的无线传感器网络可以最大限度的利用资源。在这里面,还包括网络安全协议问题和大规模传感器网络中的节点移动性管理等诸多问题有待解决。
5.2 安全问题
传感器网络多用于军事、商业领域,安全性是其重要的研究内容。由于传感器网络中节点随机部署、网络拓扑的动态性以及信道的不稳定性,使传统的安全机制无法适用。因此需要设计新型的网络安全机制,可借鉴扩频通信、接入认证/鉴权、数据水印、数据加密等技术。目前,保证网络安全性的方法也不少。
(1)借助特殊的无线传感器终端。采用PTD(Personal Trust Device)作为传感器网络的终端,在网络中设立认证服务器来提供传感器需要的服务,而在PTD和服务器之间建立认证和加密体系,只有在服务器注册过的PTD终端才能获得服务,未注册的则不能,从而保证系统安全。通常,这种系统用在家庭环境中.
(2)采用安全罩(Secure Overlay)。采用一种称为SCANv2(Secure Content Addressable Network Version 2)安全内容网络寻址的安全罩,来实现无线传感器网络的安全。SCANv2其实是在盖在实际网络层上的一个虚拟结构,通过采用Hash函数,把实际网络中的节点映射到这个罩空间之上,某一区域或某种功能的节点在罩空间的某一个共同的特定位置。用户在从网络中获取服务时,需要通过相应的安全认证进入罩空间,再进一步通过加密解密过程从这个映射空间进入实际网络中获得所需服务。
6 结束语
无线传感器网络是一种新的信息获取和处理技术,在特殊领域,它有着传统技术不可比拟的优势,人们对它的研究尚处于起步阶段。无线传感器网络有着十分广泛的应用前景,它不仅在工业、农业、军事、环境、医疗等传统领域有具有巨大的运用价值,在未来还将在许多新兴领域体现其优越性,如家用、保健、交通等领域。我们可以大胆的预见,将来无线传感器网络将无处不在,将完全融入我们的生活。比如微型传感器网络最终可能将家用电器、个人电脑和其他日常用品同互联网相连,实现远距离跟踪,家庭采用无线传感器网络负责安全调控、节电等,其应用可以涉及到人类日常生活和社会生产活动的所有领域。对这些网络的进一步研究,将满足中国未来高技术民用和军事发展的需要,不仅具有重要的社会和经济意义,也具有十分重要的战略意义。
但是,我们还应该清楚的认识到,无线传感器网络才刚刚开始发展,它的技术、应用都还还远谈不上成熟,国内企业应该抓住商机,加大投入力度,推动整个行业的发展。
摘录于网络