A. 有没有老师了解Python用于Meta分析的工具包
Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中是一个用python实现的科学计算包。包括:
一个强大的N维数组对象Array;
比较成熟的(广播)函数库;
用于整合C/C++和Fortran代码的工具包;
实用的线性代数、傅里叶变换和随机数生成函数。
SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。其功能与软件MATLAB、Scilab和GNU Octave类似。
Numpy和Scipy常常结合着使用,Python大多数机器学习库都依赖于这两个模块,绘图和可视化依赖于matplotlib模块,matplotlib的风格与matlab类似。Python机器学习库非常多,而且大多数开源,主要有:
1.scikit-learn
scikit-learn是一个基于SciPy和Numpy的开源机器学习模块,包括分类、回归、聚类系列算法,主要算法有SVM、逻辑回归、朴素贝叶斯、Kmeans、DBSCAN等,目前由INRI资助,偶尔Google也资助一点。
项目主页:
https://pypi.python.org/pypi/scikit-learn/
http://scikit-learn.org/
https://github.com/scikit-learn/scikit-learn
2.NLTK
NLTK(Natural Language Toolkit)是Python的自然语言处理模块,包括一系列的字符处理和语言统计模型。NLTK常用于学术研究和教学,应用的领域有语言学、认知科学、人工智能、信息检索、机器学习等。NLTK提供超过50个语料库和词典资源,文本处理库包括分类、分词、词干提取、解析、语义推理。可稳定运行在Windows, Mac OS X和linux平台上.
项目主页:
http://sourceforge.net/projects/nltk/
https://pypi.python.org/pypi/nltk/
http://nltk.org/
3.Mlpy
Mlpy是基于NumPy/SciPy的Python机器学习模块,它是Cython的扩展应用。包含的机器学习算法有:
l回归
least squares,ridge regression, least angle regression,elastic net, kernel ridge regression,support vector machines(SVM),partial least squares(PLS)
l分类
linear discriminant analysis(LDA), Basicperceptron, Elastic Net,logistic regression, (Kernel) Support Vector Machines (SVM), Diagonal Linear Discriminant Analysis (DLDA), Golub Classifier, Parzen-based, (kernel) Fisher Discriminant Classifier, k-nearest neighbor, Iterative RELIEF, Classification Tree, Maximum Likelihood Classifier
l聚类
hierarchical clustering, Memory-saving Hierarchical Clustering,k-means
l维度约减
(Kernel)Fisher discriminant analysis(FDA), Spectral Regression Discriminant Analysis (SRDA), (kernel)Principal component analysis(PCA)
项目主页:
http://sourceforge.net/projects/mlpy
https://mlpy.fbk.eu/
4.Shogun
Shogun是一个开源的大规模机器学习工具箱。目前Shogun的机器学习功能分为几个部分:feature表示,feature预处理,核函数表示,核函数标准化,距离表示,分类器表示,聚类方法,分布,性能评价方法,回归方法,结构化输出学习器。
SHOGUN的核心由C++实现,提供Matlab、R、Octave、Python接口。主要应用在linux平台上。
项目主页:
http://www.shogun-toolbox.org/
5.MDP
The Molar toolkit for Data Processing (MDP),用于数据处理的模块化工具包,一个Python数据处理框架。
从用户的观点,MDP是能够被整合到数据处理序列和更复杂的前馈网络结构的一批监督学习和非监督学习算法和其他数据处理单元。计算依照速度和内存需求而高效的执行。从科学开发者的观点,MDP是一个模块框架,它能够被容易地扩展。新算法的实现是容易且直观的。新实现的单元然后被自动地与程序库的其余部件进行整合。MDP在神经科学的理论研究背景下被编写,但是它已经被设计为在使用可训练数据处理算法的任何情况中都是有用的。其站在用户一边的简单性,各种不同的随时可用的算法,及应用单元的可重用性,使得它也是一个有用的教学工具。
项目主页:
http://mdp-toolkit.sourceforge.net/
https://pypi.python.org/pypi/MDP/
B. 如何进行python性能分析
使用time工具粗糙定时
首先,我们可以使用快速然而粗糙的工具:古老的unix工具time,来为我们的代码检测运行时间。
1 $ time python yourprogram.py
2
3 real 0m1.028s
4 user 0m0.001s
5 sys 0m0.003s
上面三个输入变量的意义在文章 stackoverflow article 中有详细介绍。简单的说:
real - 表示实际的程序运行时间
user - 表示程序在用户态的cpu总时间
sys - 表示在内核态的cpu总时间
通过sys和user时间的求和,你可以直观的得到系统上没有其他程序运行时你的程序运行所需要的CPU周期。
若sys和user时间之和远远少于real时间,那么你可以猜测你的程序的主要性能问题很可能与IO等待相关。
使用计时上下文管理器进行细粒度计时
我们的下一个技术涉及访问细粒度计时信息的直接代码指令。这是一小段代码,我发现使用专门的计时测量是非常重要的:
timer.py
01 import time
02
03 class Timer(object):
04 def __init__(self, verbose=False):
05 self.verbose = verbose
06
07 def __enter__(self):
08 self.start = time.time()
09 return self
10
11 def __exit__(self, *args):
12 self.end = time.time()
13 self.secs = self.end - self.start
14 self.msecs = self.secs * 1000 # millisecs
15 if self.verbose:
16 print 'elapsed time: %f ms' % self.msecs
为了使用它,你需要用Python的with关键字和Timer上下文管理器包装想要计时的代码块。它将会在你的代码块开始执行的时候启动计时器,在你的代码块结束的时候停止计时器。
这是一个使用上述代码片段的例子:
01 from timer import Timer
02 from redis import Redis
03 rdb = Redis()
04
05 with Timer() as t:
06 rdb.lpush("foo", "bar")
07 print "=> elasped lpush: %s s" % t.secs
08
09 with Timer as t:
10 rdb.lpop("foo")
11 print "=> elasped lpop: %s s" % t.secs
我经常将这些计时器的输出记录到文件中,这样就可以观察我的程序的性能如何随着时间进化。
使用分析器逐行统计时间和执行频率
Robert Kern有一个称作line_profiler的不错的项目,我经常使用它查看我的脚步中每行代码多快多频繁的被执行。
想要使用它,你需要通过pip安装该python包:
1 $ pip install line_profiler
一旦安装完成,你将会使用一个称做“line_profiler”的新模组和一个“kernprof.py”可执行脚本。
想要使用该工具,首先修改你的源代码,在想要测量的函数上装饰@profile装饰器。不要担心,你不需要导入任何模组。kernprof.py脚本将会在执行的时候将它自动地注入到你的脚步的运行时。
primes.py
01 @profile
02 def primes(n):
03 if n==2:
04 return [2]
05 elif n<2:
06 return []
07 s=range(3,n+1,2)
08 mroot = n ** 0.5
09 half=(n+1)/2-1
10 i=0
11 m=3
12 while m <= mroot:
13 if s[i]:
14 j=(m*m-3)/2
15 s[j]=0
16 while j
17 s[j]=0
18 j+=m
19 i=i+1
20 m=2*i+3
21 return [2]+[x for x in s if x]
22 primes(100)
一旦你已经设置好了@profile装饰器,使用kernprof.py执行你的脚步。
1 $ kernprof.py -l -v fib.py
-l选项通知kernprof注入@profile装饰器到你的脚步的内建函数,-v选项通知kernprof在脚本执行完毕的时候显示计时信息。上述脚本的输出看起来像这样:
01 Wrote profile results to primes.py.lprof
02 Timer unit: 1e-06 s
03
04 File: primes.py
05 Function: primes at line 2
06 Total time: 0.00019 s
07
08 Line # Hits Time Per Hit % Time Line Contents
09 ==============================================================
10 2 @profile
11 3 def primes(n):
12 4 1 2 2.0 1.1 if n==2:
13 5 return [2]
14 6 1 1 1.0 0.5 elif n<2:
15 7 return []
16 8 1 4 4.0 2.1 s=range(3,n+1,2)
17 9 1 10 10.0 5.3 mroot = n ** 0.5
18 10 1 2 2.0 1.1 half=(n+1)/2-1
19 11 1 1 1.0 0.5 i=0
20 12 1 1 1.0 0.5 m=3
21 13 5 7 1.4 3.7 while m <= mroot:
22 14 4 4 1.0 2.1 if s[i]:
23 15 3 4 1.3 2.1 j=(m*m-3)/2
24 16 3 4 1.3 2.1 s[j]=0
25 17 31 31 1.0 16.3 while j
26 18 28 28 1.0 14.7 s[j]=0
27 19 28 29 1.0 15.3 j+=m
28 20 4 4 1.0 2.1 i=i+1
29 21 4 4 1.0 2.1 m=2*i+3
30 22 50 54 1.1 28.4 return [2]+[x for x in s if x]
寻找具有高Hits值或高Time值的行。这些就是可以通过优化带来最大改善的地方。
程序使用了多少内存?
现在我们对计时有了较好的理解,那么让我们继续弄清楚程序使用了多少内存。我们很幸运,Fabian Pedregosa模仿Robert Kern的line_profiler实现了一个不错的内存分析器。
首先使用pip安装:
1 $ pip install -U memory_profiler
2 $ pip install psutil
(这里建议安装psutil包,因为它可以大大改善memory_profiler的性能)。
就像line_profiler,memory_profiler也需要在感兴趣的函数上面装饰@profile装饰器:
1 @profile
2 def primes(n):
3 ...
4 ...
想要观察你的函数使用了多少内存,像下面这样执行:
1 $ python -m memory_profiler primes.py
一旦程序退出,你将会看到看起来像这样的输出:
01 Filename: primes.py
02
03 Line # Mem usage Increment Line Contents
04 ==============================================
05 2 @profile
06 3 7.9219 MB 0.0000 MB def primes(n):
07 4 7.9219 MB 0.0000 MB if n==2:
08 5 return [2]
09 6 7.9219 MB 0.0000 MB elif n<2:
10 7 return []
11 8 7.9219 MB 0.0000 MB s=range(3,n+1,2)
12 9 7.9258 MB 0.0039 MB mroot = n ** 0.5
13 10 7.9258 MB 0.0000 MB half=(n+1)/2-1
14 11 7.9258 MB 0.0000 MB i=0
15 12 7.9258 MB 0.0000 MB m=3
16 13 7.9297 MB 0.0039 MB while m <= mroot:
17 14 7.9297 MB 0.0000 MB if s[i]:
18 15 7.9297 MB 0.0000 MB j=(m*m-3)/2
19 16 7.9258 MB -0.0039 MB s[j]=0
20 17 7.9297 MB 0.0039 MB while j
21 18 7.9297 MB 0.0000 MB s[j]=0
22 19 7.9297 MB 0.0000 MB j+=m
23 20 7.9297 MB 0.0000 MB i=i+1
24 21 7.9297 MB 0.0000 MB m=2*i+3
25 22 7.9297 MB 0.0000 MB return [2]+[x for x in s if x]
line_profiler和memory_profiler的IPython快捷方式
memory_profiler和line_profiler有一个鲜为人知的小窍门,两者都有在IPython中的快捷命令。你需要做的就是在IPython会话中输入以下内容:
1 %load_ext memory_profiler
2 %load_ext line_profiler
在这样做的时候你需要访问魔法命令%lprun和%mprun,它们的行为类似于他们的命令行形式。主要区别是你不需要使用@profiledecorator来修饰你要分析的函数。只需要在IPython会话中像先前一样直接运行分析:
1 In [1]: from primes import primes
2 In [2]: %mprun -f primes primes(1000)
3 In [3]: %lprun -f primes primes(1000)
这样可以节省你很多时间和精力,因为你的源代码不需要为使用这些分析命令而进行修改。
内存泄漏在哪里?
cPython解释器使用引用计数做为记录内存使用的主要方法。这意味着每个对象包含一个计数器,当某处对该对象的引用被存储时计数器增加,当引用被删除时计数器递减。当计数器到达零时,cPython解释器就知道该对象不再被使用,所以删除对象,释放占用的内存。
如果程序中不再被使用的对象的引用一直被占有,那么就经常发生内存泄漏。
查找这种“内存泄漏”最快的方式是使用Marius Gedminas编写的objgraph,这是一个极好的工具。该工具允许你查看内存中对象的数量,定位含有该对象的引用的所有代码的位置。
C. Python自动化测试工具大概有哪些
一、对于你的问题,首先明确测试类型,然后才能明确自动化测试类型,最后定位哪个类型用哪个方面的自动化测试工具。
1、测试类型可以包括:白盒测试、黑盒测试(功能测试、性能测试)等。
2、不同的测试类型使用的自动化测试方法不同,白盒测试主要针对代码级的单元测试、黑盒测试主要面对功能级和系统级的验证测试。
3、自动化测试,针对白盒测试,一般需要有一定的编程基础,即能够基于功能代码写测试代码,常用的单元测试方面的自动化测试工具很多,上网一搜全是。
4、自动化测试,针对功能测试,有几种情况,基于CLI、API和GUI的测试;基于CLI、API的测试,即应用脚本技术向设备模拟发送CLI命令或者API请求,以达到控制设备的效果。基于GUI功能测试,即应用传统的界面自动化测试工具(例如:RFT、QTP等)控制界面控件操作的方法,以达到模拟用户操作,这几种方式都需要你有一定的编码基础;基于CLI、API的需要你懂脚本技术(例如:tcl、python、ruby等),RFT需要你懂java或者.net、QTP需要VB等。
5、你说的loadrunner就是性能测试方面的工具,即是测试软件性能、例如多用户操作等性能、也需要写代码,LR脚本支持的语言有:java、
c、Visual Basic、vbscrīpt。默认的脚本生成语言为
C;其实我想说的是,性能测试工具不重要,你需要掌握其性能测试的方法才是更重要的。
二、我感觉你想入门自动化测试,但是从你问的问题来看,有一定盲目性,我简单说一下自动化测试吧。
1、自动化测试,其理念就是应用各种手段模拟人工操作,节省人力测试成本,保证产品测试质量。
2、你想学好自动化软件测试,不是单单靠学习几个自动化工具就能掌握的,但是你可以从工具入手,首先,告诉你自动化测试的基础是:
1)编程技巧,包括高级语言和脚本语言,脚本语言是初期的掌握,可以有,tcl、phython、ruby等而高级语言,要好好学好一门,例如,我是对java为重点。还有,如果你是对web自动化测试的话,那么jsp、php、HTML、CSS等web语言是必须掌握的。
2)操作系统技巧;因为软件自动化测试是构建在操作系统上的,其技巧需要能善于利用到操作系统的各种技巧,例如:注册表、环境变量、句柄等。
3)数据库知识,要善于利用数据库知识去存储管理。
4)业务知识,这也是重点。你所在软件行业的软件业务,要知道你的软件的工作方式。
5)质量与流程管理理念。
然后,你的学习步骤:
1)可以从工具入手,根据具体的项目去学习;例如:java软件界面测试(RFT、QTP的java插件等)、web界面测试(QTP、
selenium等)、性能测试(RPT、loadrunner等)。但记住,学习其工具,重点不是简单的使用,而是如何利用工具去扩展。
2)然后,重点学习以上的基础,以编程为重点,其余的结合学习,顺便说一句,其实自动化测试的理念与软件设计模式理念很像,你可以从中有所领悟。
3)之后,再学习去拓建自己的自动化测试框架,何谓框架,一下说不清楚,我给你推荐一下。
注意:如果没有自动化测试方面的实践项目的话,最好先从基础学起,因为基础学好了,自动化测试入门会很快的。
4(至于性能测试,也是一样,可以先从工具入手,但不要局限于工具,性能测试最重要的是环境的构建方法以及对测试结果的分析方法,所以性能测试重点在于分析和实现过程,而不是工具使用过程。
D. 后端编程Python3-调试、测试和性能剖析(下)
单元测试(Unit Testing)
为程序编写测试——如果做的到位——有助于减少bug的出现,并可以提高我们对程序按预期目标运行的信心。通常,测试并不能保证正确性,因为对大多数程序而言, 可能的输入范围以及可能的计算范围是如此之大,只有其中最小的一部分能被实际地进 行测试。尽管如此,通过仔细地选择测试的方法和目标,可以提高代码的质量。
大量不同类型的测试都可以进行,比如可用性测试、功能测试以及整合测试等。这里, 我们只讲单元测试一对单独的函数、类与方法进行测试,确保其符合预期的行为。
TDD的一个关键点是,当我们想添加一个功能时——比如为类添加一个方法—— 我们首次为其编写一个测试用例。当然,测试将失败,因为我们还没有实际编写该方法。现在,我们编写该方法,一旦方法通过了测试,就可以返回所有测试,确保我们新添加的代码没有任何预期外的副作用。一旦所有测试运行完毕(包括我们为新功能编写的测试),就可以对我们的代码进行检查,并有理有据地相信程序行为符合我们的期望——当然,前提是我们的测试是适当的。
比如,我们编写了一个函数,该函数在特定的索引位置插入一个字符串,可以像下面这样开始我们的TDD:
def insert_at(string, position, insert):
"""Returns a of string with insert inserted at the position
>>> string = "ABCDE"
>>> result =[]
>>> for i in range(-2, len(string) + 2):
... result.append(insert_at(string, i,“-”))
>>> result[:5]
['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']
>>> result[5:]
['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']
"""
return string
对不返回任何参数的函数或方法(通常返回None),我们通常赋予其由pass构成的一个suite,对那些返回值被试用的,我们或者返回一个常数(比如0),或者某个不变的参数——这也是我们这里所做的。(在更复杂的情况下,返回fake对象可能更有用一一对这样的类,提供mock对象的第三方模块是可用的。)
运行doctest时会失败,并列出每个预期内的字符串('ABCD-EF'、'ABCDE-F' 等),及其实际获取的字符串(所有的都是'ABCD-EF')。一旦确定doctest是充分的和正确的,就可以编写该函数的主体部分,在本例中只是简单的return string[:position] + insert+string[position:]。(如果我们编写的是 return string[:position] + insert,之后复制 string [:position]并将其粘贴在末尾以便减少一些输入操作,那么doctest会立即提示错误。)
Python的标准库提供了两个单元测试模块,一个是doctest,这里和前面都简单地提到过,另一个是unittest。此外,还有一些可用于Python的第三方测试工具。其中最著名的两个是nose (code.google.com/p/python-nose)与py.test (codespeak.net/py/dist/test/test.html), nose 致力于提供比标准的unittest 模块更广泛的功能,同时保持与该模块的兼容性,py.test则采用了与unittest有些不同的方法,试图尽可能消除样板测试代码。这两个第三方模块都支持测试发现,因此没必要写一个总体的测试程序——因为模块将自己搜索测试程序。这使得测试整个代码树或某一部分 (比如那些已经起作用的模块)变得很容易。那些对测试严重关切的人,在决定使用哪个测试工具之前,对这两个(以及任何其他有吸引力的)第三方模块进行研究都是值 得的。
创建doctest是直截了当的:我们在模块中编写测试、函数、类与方法的docstrings。 对于模块,我们简单地在末尾添加了 3行:
if __name__ =="__main__":
import doctest
doctest.testmod()
在程序内部使用doctest也是可能的。比如,blocks.py程序(其模块在后面)有自己函数的doctest,但以如下代码结尾:
if __name__== "__main__":
main()
这里简单地调用了程序的main()函数,并且没有执行程序的doctest。要实验程序的 doctest,有两种方法。一种是导入doctest模块,之后运行程序---比如,在控制台中输 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用类似于 C:Python3 lpython.exe 这样的形式替代python3)。如果所有测试运行良好,就没有输出,因此,我们可能宁愿执行python3-m doctest blocks.py-v,因为这会列出每个执行的doctest,并在最后给出结果摘要。
另一种执行doctest的方法是使用unittest模块创建单独的测试程序。在概念上, unittest模块是根据Java的JUnit单元测试库进行建模的,并用于创建包含测试用例的测试套件。unittest模块可以基于doctests创建测试用例,而不需要知道程序或模块包含的任何事物——只要知道其包含doctest即可。因此,为给blocks.py程序制作一个测试套件,我们可以创建如下的简单程序(将其称为test_blocks.py):
import doctest
import unittest
import blocks
suite = unittest.TestSuite()
suite.addTest(doctest.DocTestSuite(blocks))
runner = unittest.TextTestRunner()
print(runner.run(suite))
注意,如果釆用这种方法,程序的名称上会有一个隐含的约束:程序名必须是有效的模块名。因此,名为convert-incidents.py的程序的测试不能写成这样。因为import convert-incidents不是有效的,在Python标识符中,连接符是无效的(避开这一约束是可能的,但最简单的解决方案是使用总是有效模块名的程序文件名,比如,使用下划线替换连接符)。这里展示的结构(创建一个测试套件,添加一个或多个测试用例或测试套件,运行总体的测试套件,输出结果)是典型的机遇unittest的测试。运行时,这一特定实例产生如下结果:
...
.............................................................................................................
Ran 3 tests in 0.244s
OK
每次执行一个测试用例时,都会输出一个句点(因此上面的输出最前面有3个句点),之后是一行连接符,再之后是测试摘要(如果有任何一个测试失败,就会有更多的输出信息)。
如果我们尝试将测试分离开(典型情况下是要测试的每个程序和模块都有一个测试用例),就不要再使用doctests,而是直接使用unittest模块的功能——尤其是我们习惯于使用JUnit方法进行测试时ounittest模块会将测试分离于代码——对大型项目(测试编写人员与开发人员可能不一致)而言,这种方法特别有用。此外,unittest单元测试编写为独立的Python模块,因此,不会像在docstring内部编写测试用例时受到兼容性和明智性的限制。
unittest模块定义了 4个关键概念。测试夹具是一个用于描述创建测试(以及用完之后将其清理)所必需的代码的术语,典型实例是创建测试所用的一个输入文件,最后删除输入文件与结果输出文件。测试套件是一组测试用例的组合。测试用例是测试的基本单元—我们很快就会看到实例。测试运行者是执行一个或多个测试套件的对象。
典型情况下,测试套件是通过创建unittest.TestCase的子类实现的,其中每个名称 以“test”开头的方法都是一个测试用例。如果我们需要完成任何创建操作,就可以在一个名为setUp()的方法中实现;类似地,对任何清理操作,也可以实现一个名为 tearDown()的方法。在测试内部,有大量可供我们使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(对于测试浮点数很有用)、assertRaises() 以及更多,还包括很多对应的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。
unittest模块进行了很好的归档,并且提供了大量功能,但在这里我们只是通过一 个非常简单的测试套件来感受一下该模块的使用。这里将要使用的实例,该练习要求创建一个Atomic模块,该模块可以用作一 个上下文管理器,以确保或者所有改变都应用于某个列表、集合或字典,或者所有改变都不应用。作为解决方案提供的Atomic.py模块使用30行代码来实现Atomic类, 并提供了 100行左右的模块doctest。这里,我们将创建test_Atomic.py模块,并使用 unittest测试替换doctest,以便可以删除doctest。
在编写测试模块之前,我们需要思考都需要哪些测试。我们需要测试3种不同的数据类型:列表、集合与字典。对于列表,需要测试的是插入项、删除项或修改项的值。对于集合,我们必须测试向其中添加或删除一个项。对于字典,我们必须测试的是插入一个项、修改一个项的值、删除一个项。此外,还必须要测试的是在失败的情况下,不会有任何改变实际生效。
结构上看,测试不同数据类型实质上是一样的,因此,我们将只为测试列表编写测试用例,而将其他的留作练习。test_Atomic.py模块必须导入unittest模块与要进行测试的Atomic模块。
创建unittest文件时,我们通常创建的是模块而非程序。在每个模块内部,我们定义一个或多个unittest.TestCase子类。比如,test_Atomic.py模块中仅一个单独的 unittest-TestCase子类,也就是TestAtomic (稍后将对其进行讲解),并以如下两行结束:
if name == "__main__":
unittest.main()
这两行使得该模块可以单独运行。当然,该模块也可以被导入并从其他测试程序中运行——如果这只是多个测试套件中的一个,这一点是有意义的。
如果想要从其他测试程序中运行test_Atomic.py模块,那么可以编写一个与此类似的程序。我们习惯于使用unittest模块执行doctests,比如:
import unittest
import test_Atomic
suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)
runner = unittest.TextTestRunner()
pnnt(runner.run(suite))
这里,我们已经创建了一个单独的套件,这是通过让unittest模块读取test_Atomic 模块实现的,并且使用其每一个test*()方法(本实例中是test_list_success()、test_list_fail(),稍后很快就会看到)作为测试用例。
我们现在将查看TestAtomic类的实现。对通常的子类(不包括unittest.TestCase 子类),不怎么常见的是,没有必要实现初始化程序。在这一案例中,我们将需要建立 一个方法,但不需要清理方法,并且我们将实现两个测试用例。
def setUp(self):
self.original_list = list(range(10))
我们已经使用了 unittest.TestCase.setUp()方法来创建单独的测试数据片段。
def test_list_succeed(self):
items = self.original_list[:]
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4]= -782
atomic.insert(0, -9)
self.assertEqual(items,
[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])
def test_list_fail(self):
items = self.original_list[:]
with self.assertRaises(AttributeError):
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4] = -782
atomic.poop() # Typo
self.assertListEqual(items, self.original_list)
这里,我们直接在测试方法中编写了测试代码,而不需要一个内部函数,也不再使用unittest.TestCase.assertRaised()作为上下文管理器(期望代码产生AttributeError)。 最后我们也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。
正如我们已经看到的,Python的测试模块易于使用,并且极为有用,在我们使用 TDD的情况下更是如此。它们还有比这里展示的要多得多的大量功能与特征——比如,跳过测试的能力,这有助于理解平台差别——并且这些都有很好的文档支持。缺失的一个功能——但nose与py.test提供了——是测试发现,尽管这一特征被期望在后续的Python版本(或许与Python 3.2—起)中出现。
性能剖析(Profiling)
如果程序运行很慢,或者消耗了比预期内要多得多的内存,那么问题通常是选择的算法或数据结构不合适,或者是以低效的方式进行实现。不管问题的原因是什么, 最好的方法都是准确地找到问题发生的地方,而不只是检査代码并试图对其进行优化。 随机优化会导致引入bug,或者对程序中本来对程序整体性能并没有实际影响的部分进行提速,而这并非解释器耗费大部分时间的地方。
在深入讨论profiling之前,注意一些易于学习和使用的Python程序设计习惯是有意义的,并且对提高程序性能不无裨益。这些技术都不是特定于某个Python版本的, 而是合理的Python程序设计风格。第一,在需要只读序列时,最好使用元组而非列表; 第二,使用生成器,而不是创建大的元组和列表并在其上进行迭代处理;第三,尽量使用Python内置的数据结构 dicts、lists、tuples 而不实现自己的自定义结构,因为内置的数据结构都是经过了高度优化的;第四,从小字符串中产生大字符串时, 不要对小字符串进行连接,而是在列表中累积,最后将字符串列表结合成为一个单独的字符串;第五,也是最后一点,如果某个对象(包括函数或方法)需要多次使用属性进行访问(比如访问模块中的某个函数),或从某个数据结构中进行访问,那么较好的做法是创建并使用一个局部变量来访问该对象,以便提供更快的访问速度。
Python标准库提供了两个特别有用的模块,可以辅助调査代码的性能问题。一个是timeit模块——该模块可用于对一小段Python代码进行计时,并可用于诸如对两个或多个特定函数或方法的性能进行比较等场合。另一个是cProfile模块,可用于profile 程序的性能——该模块对调用计数与次数进行了详细分解,以便发现性能瓶颈所在。
为了解timeit模块,我们将查看一些小实例。假定有3个函数function_a()、 function_b()、function_c(), 3个函数执行同样的计算,但分别使用不同的算法。如果将这些函数放于同一个模块中(或分别导入),就可以使用timeit模块对其进行运行和比较。下面给出的是模块最后使用的代码:
if __name__ == "__main__":
repeats = 1000
for function in ("function_a", "function_b", "function_c"):
t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))
sec = t.timeit(repeats) / repeats
print("{function}() {sec:.6f} sec".format(**locals()))
赋予timeit.Timer()构造子的第一个参数是我们想要执行并计时的代码,其形式是字符串。这里,该字符串是“function_a(X,Y)”;第二个参数是可选的,还是一个待执行的字符串,这一次是在待计时的代码之前,以便提供一些建立工作。这里,我们从 __main__ (即this)模块导入了待测试的函数,还有两个作为输入数据传入的变量(X 与Y),这两个变量在该模块中是作为全局变量提供的。我们也可以很轻易地像从其他模块中导入数据一样来进行导入操作。
调用timeit.Timer对象的timeit()方法时,首先将执行构造子的第二个参数(如果有), 之后执行构造子的第一个参数并对其执行时间进行计时。timeit.Timer.timeit()方法的返回值是以秒计数的时间,类型是float。默认情况下,timeit()方法重复100万次,并返回所 有这些执行的总秒数,但在这一特定案例中,只需要1000次反复就可以给出有用的结果, 因此对重复计数次数进行了显式指定。在对每个函数进行计时后,使用重复次数对总数进行除法操作,就得到了平均执行时间,并在控制台中打印出函数名与执行时间。
function_a() 0.001618 sec
function_b() 0.012786 sec
function_c() 0.003248 sec
在这一实例中,function_a()显然是最快的——至少对于这里使用的输入数据而言。 在有些情况下一一比如输入数据不同会对性能产生巨大影响——可能需要使用多组输入数据对每个函数进行测试,以便覆盖有代表性的测试用例,并对总执行时间或平均执行时间进行比较。
有时监控自己的代码进行计时并不是很方便,因此timeit模块提供了一种在命令行中对代码执行时间进行计时的途径。比如,要对MyMole.py模块中的函数function_a()进行计时,可以在控制台中输入如下命令:python3 -m timeit -n 1000 -s "from MyMole import function_a, X, Y" "function_a(X, Y)"(与通常所做的一样,对 Windows 环境,我们必须使用类似于C:Python3lpython.exe这样的内容来替换python3)。-m选项用于Python 解释器,使其可以加载指定的模块(这里是timeit),其他选项则由timeit模块进行处理。 -n选项指定了循环计数次数,-s选项指定了要建立,最后一个参数是要执行和计时的代码。命令完成后,会向控制台中打印运行结果,比如:
1000 loops, best of 3: 1.41 msec per loop
之后我们可以轻易地对其他两个函数进行计时,以便对其进行整体的比较。
cProfile模块(或者profile模块,这里统称为cProfile模块)也可以用于比较函数 与方法的性能。与只是提供原始计时的timeit模块不同的是,cProfile模块精确地展示 了有什么被调用以及每个调用耗费了多少时间。下面是用于比较与前面一样的3个函数的代码:
if __name__ == "__main__":
for function in ("function_a", "function_b", "function_c"):
cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))
我们必须将重复的次数放置在要传递给cProfile.run()函数的代码内部,但不需要做任何创建,因为模块函数会使用内省来寻找需要使用的函数与变量。这里没有使用显式的print()语句,因为默认情况下,cProfile.run()函数会在控制台中打印其输出。下面给出的是所有函数的相关结果(有些无关行被省略,格式也进行了稍许调整,以便与页面适应):
1003 function calls in 1.661 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.003 0.003 1.661 1.661 :1 ( )
1000 1.658 0.002 1.658 0.002 MyMole.py:21 (function_a)
1 0.000 0.000 1.661 1.661 {built-in method exec}
5132003 function calls in 22.700 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.487 0.487 22.700 22.700 : 1 ( )
1000 0.011 0.000 22.213 0.022 MyMole.py:28(function_b)
5128000 7.048 0.000 7.048 0.000 MyMole.py:29( )
1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}
1 0.000 0.000 22.700 22.700 {built-in method exec}
1000 0.001 0.000 0.001 0.000 {built-in method len}
1000 15.149 0.015 22.196 0.022 {built-in method sorted}
5129003 function calls in 12.987 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.205 0.205 12.987 12.987 :l ( )
1000 6.472 0.006 12.782 0.013 MyMole.py:36(function_c)
5128000 6.311 0.000 6.311 0.000 MyMole.py:37( )
1 0.000 0.000 12.987 12.987 {built-in method exec}
ncalls ("调用的次数")列列出了对指定函数(在filename:lineno(function)中列出) 的调用次数。回想一下我们重复了 1000次调用,因此必须将这个次数记住。tottime (“总的时间”)列列出了某个函数中耗费的总时间,但是排除了函数调用的其他函数内部花费的时间。第一个percall列列出了对函数的每次调用的平均时间(tottime // ncalls)。 cumtime ("累积时间")列出了在函数中耗费的时间,并且包含了函数调用的其他函数内部花费的时间。第二个percall列列出了对函数的每次调用的平均时间,包括其调用的函数耗费的时间。
这种输出信息要比timeit模块的原始计时信息富有启发意义的多。我们立即可以发现,function_b()与function_c()使用了被调用5000次以上的生成器,使得它们的速度至少要比function_a()慢10倍以上。并且,function_b()调用了更多通常意义上的函数,包括调用内置的sorted()函数,这使得其几乎比function_c()还要慢两倍。当然,timeit() 模块提供了足够的信息来查看计时上存在的这些差别,但cProfile模块允许我们了解为什么会存在这些差别。正如timeit模块允许对代码进行计时而又不需要对其监控一样,cProfile模块也可以做到这一点。然而,从命令行使用cProfile模块时,我们不能精确地指定要执行的 是什么——而只是执行给定的程序或模块,并报告所有这些的计时结果。需要使用的 命令行是python3 -m cProfile programOrMole.py,产生的输出信息与前面看到的一 样,下面给出的是输出信息样例,格式上进行了一些调整,并忽略了大多数行:
10272458 function calls (10272457 primitive calls) in 37.718 CPU secs
ncalls tottime percall cumtime percall filename:lineno(function)
10.000 0.000 37.718 37.718 :1 ( )
10.719 0.719 37.717 37.717 :12( )
1000 1.569 0.002 1.569 0.002 :20(function_a)
1000 0.011 0.000 22.560 0.023 :27(function_b)
5128000 7.078 0.000 7.078 0.000 :28( )
1000 6.510 0.007 12.825 0.013 :35(function_c)
5128000 6.316 0.000 6.316 0.000 :36( )
在cProfile术语学中,原始调用指的就是非递归的函数调用。
以这种方式使用cProfile模块对于识别值得进一步研究的区域是有用的。比如,这里 我们可以清晰地看到function_b()需要耗费更长的时间,但是我们怎样获取进一步的详细资料?我们可以使用cProfile.run("function_b()")来替换对function_b()的调用。或者可以保存完全的profile数据并使用pstats模块对其进行分析。要保存profile,就必须对命令行进行稍许修改:python3 -m cProfile -o profileDataFile programOrMole.py。 之后可以对 profile 数据进行分析,比如启动IDLE,导入pstats模块,赋予其已保存的profileDataFile,或者也可以在控制台中交互式地使用pstats。
下面给出的是一个非常短的控制台会话实例,为使其适合页面展示,进行了适当调整,我们自己的输入则以粗体展示:
$ python3 -m cProfile -o profile.dat MyMole.py
$ python3 -m pstats
Welcome to the profile statistics browser.
% read profile.dat
profile.dat% callers function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function was called by...
ncalls tottime cumtime
:27(function_b) <- 1000 0.011 22.251 :12( )
profile.dat% callees function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function called...
ncalls tottime cumtime
:27(function_b)->
1000 0.005 0.005 built-in method bisectJeft
1000 0.001 0.001 built-in method len
1000 1 5.297 22.234 built-in method sorted
profile.dat% quit
输入help可以获取命令列表,help后面跟随命令名可以获取该命令的更多信息。比如, help stats将列出可以赋予stats命令的参数。还有其他一些可用的工具,可以提供profile数据的图形化展示形式,比如 RunSnakeRun (www.vrplumber.com/prograinming/runsnakerun), 该工具需要依赖于wxPython GUI库。
使用timeit与cProfile模块,我们可以识别出我们自己代码中哪些区域会耗费超过预期的时间;使用cProfile模块,还可以准确算岀时间消耗在哪里。
以上内容部分摘自视频课程 05后端编程Python-19调试、测试和性能调优(下) ,更多实操示例请参照视频讲解。跟着张员外讲编程,学习更轻松,不花钱还能学习真本领。