㈠ 云数据库有什么用
“云数据库是指被优化或部署到一个虚拟计算环境中的数据库,可以实现按需付费、专按需扩展、属高可用性以及存储整合等优势。云数据库的特性有:实例创建快速、支持只读实例、故障自动切换、数据备份、Binlog备份、访问白名单、监控与消息通知。”
㈡ 互联网如何海量存储数据
目前存储海量数据的技术主要包括NoSQL、分布式文件系统、和传统关系型数据库。随着互联网行业不断的发展,产生的数据量越来越多,并且这些数据的特点是半结构化和非结构化,数据很可能是不精确的,易变的。这样传统关系型数据库就无法发挥它的优势。因此,目前互联网行业偏向于使用NoSQL和分布式文件系统来存储海量数据。
下面介绍下常用的NoSQL和分布式文件系统。
NoSQL
互联网行业常用的NoSQL有:HBase、MongoDB、Couchbase、LevelDB。
HBase是Apache Hadoop的子项目,理论依据为Google论文 Bigtable: A Distributed Storage System for Structured Data开发的。HBase适合存储半结构化或非结构化的数据。HBase的数据模型是稀疏的、分布式的、持久稳固的多维map。HBase也有行和列的概念,这是与RDBMS相同的地方,但却又不同。HBase底层采用HDFS作为文件系统,具有高可靠性、高性能。
MongoDB是一种支持高性能数据存储的开源文档型数据库。支持嵌入式数据模型以减少对数据库系统的I/O、利用索引实现快速查询,并且嵌入式文档和集合也支持索引,它复制能力被称作复制集(replica set),提供了自动的故障迁移和数据冗余。MongoDB的分片策略将数据分布在服务器集群上。
Couchbase这种NoSQL有三个重要的组件:Couchbase服务器、Couchbase Gateway、Couchbase Lite。Couchbase服务器,支持横向扩展,面向文档的数据库,支持键值操作,类似于SQL查询和内置的全文搜索;Couchbase Gateway提供了用于RESTful和流式访问数据的应用层API。Couchbase Lite是一款面向移动设备和“边缘”系统的嵌入式数据库。Couchbase支持千万级海量数据存储
分布式文件系统
如果针对单个大文件,譬如超过100MB的文件,使用NoSQL存储就不适当了。使用分布式文件系统的优势在于,分布式文件系统隔离底层数据存储和分布的细节,展示给用户的是一个统一的逻辑视图。常用的分布式文件系统有Google File System、HDFS、MooseFS、Ceph、GlusterFS、Lustre等。
相比过去打电话、发短信、用彩铃的“老三样”,移动互联网的发展使得人们可以随时随地通过刷微博、看视频、微信聊天、浏览网页、地图导航、网上购物、外卖订餐等,这些业务的海量数据都构建在大规模网络云资源池之上。当14亿中国人把衣食住行搬上移动互联网的同时,也给网络云资源池带来巨大业务挑战。
首先,用户需求动态变化,传统业务流量主要是端到端模式,较为稳定;而互联网流量易受热点内容牵引,数据流量流向复杂和规模多变:比如双十一购物狂潮,电商平台订单创建峰值达到58.3万笔,要求通信网络提供高并发支持;又如优酷春节期间有超过23亿人次上网刷剧、抖音拜年短视频增长超10倍,需要通信网络能够灵活扩充带宽。面对用户动态多变的需求,通信网络需要具备快速洞察和响应用户需求的能力,提供高效、弹性、智能的数据服务。
“随着通信网络管道十倍百倍加粗、节点数从千万级逐渐跃升至百亿千亿级,如何‘接得住、存得下’海量数据,成为网络云资源池建设面临的巨大考验”,李辉表示。一直以来,作为新数据存储首倡者和引领者,浪潮存储携手通信行业用户,不断 探索 提速通信网络云基础设施的各种姿势。
早在2018年,浪潮存储就参与了通信行业基础设施建设,四年内累计交付约5000套存储产品,涵盖全闪存储、高端存储、分布式存储等明星产品。其中在网络云建设中,浪潮存储已连续两年两次中标全球最大的NFV网络云项目,其中在网络云二期建设中,浪潮存储提供数千节点,为上层网元、应用提供高效数据服务。在最新的NFV三期项目中,浪潮存储也已中标。
能够与通信用户在网络云建设中多次握手,背后是浪潮存储的持续技术投入与创新。浪潮存储6年内投入超30亿研发经费,开发了业界首个“多合一”极简架构的浪潮并行融合存储系统。此存储系统能够统筹管理数千个节点,实现性能、容量线性扩展;同时基于浪潮iTurbo智能加速引擎的智能IO均衡、智能资源调度、智能元数据管理等功能,与自研NVMe SSD闪存盘进行系统级别联调优化,让百万级IO均衡落盘且路径更短,将存储系统性能发挥到极致。
“为了确保全球最大规模的网络云正常上线运行,我们联合用户对存储集群展开了长达数月的魔鬼测试”,浪潮存储工程师表示。网络云的IO以虚拟机数据和上层应用数据为主,浪潮按照每个存储集群支持15000台虚机进行配置,分别对单卷随机读写、顺序写、混合读写以及全系统随机读写的IO、带宽、时延等指标进行了360无死角测试,达到了通信用户提出的单卷、系统性能不低于4万和12万IOPS、时延小于3ms的要求,产品成熟度得到了验证。
以通信行业为例,2020年全国移动互联网接入流量1656亿GB,相当于中国14亿人每人消耗118GB数据;其中春节期间,移动互联网更是创下7天消耗36亿GB数据流量的记录,还“捎带”打了548亿分钟电话、发送212亿条短信……海量实时数据洪流,在网络云资源池(NFV)支撑下收放自如,其中分布式存储平台发挥了作用。如此样板工程,其巨大示范及拉动作用不言而喻。
㈢ MySQL 数据库如何添加列
传统情况
我们先回顾一下,在没有 "立刻加列" 功能时,加列操作是怎么完成的。我们也借此来熟悉一下本期的图例:
扩展思考题:是否能设计其他的数据格式,取代instant标志位和"列数"字段,使得 加列/删列 操作都能 "立刻完成" ?(提示:考虑 加列- 删列- 再加列 的情况)
使用限制
在了解原理之后,我们来看看"立刻加列"的使用限制,就很容易能理解其中的前两项:
"立刻加列"的加列位置只能在表的最后,而不能加在其他列之间
在元数据中,只记录了 数据行 应有多少列,而没有记录 这些列 应出现的位置。所以无法实现指定列的位置
"立刻加列"不能添加主键列
加列 不能涉及聚簇索引的变更,否则就变成了 "重建" 操作,不是 "立刻" 完成了
"立刻加列"不支持压缩的表格式
按照 WL 的说法:"COMPRESSED is no need to supported"(没必要支持不怎么用的格式)
总结回顾
我们总结一下上面的讨论:
"立刻加列" 之所以高效的原因是:
在执行 "立刻加列" 时,不变更数据行的结构
读取 "旧" 数据时,"伪造"新增的列,使结果正确
写入 "新" 数据时,使用了新的数据格式(增加了instant 标志位和 "列数" 字段),以区分新旧数据
读取 "新" 数据时,可以如实读取数据
"立刻加列"的 "伪造" 手法,不能一直维持下去。当发生与 "立刻加列" 操作不兼容的 DDL时,表数据就会发生重建
回到之前遗留的两个问题:
"立刻加列" 是如何工作的 ?
我们已经解答了这个问题
所谓 "立刻加列" 是否完全不影响业务,是否是真正的 "立刻" 完成 ?
可以看到:就算是 "立刻加列",也需要变更 数据字典,那么 该上的锁还是逃不掉的。也就是说 这里的 "立刻" 指的是 "不变更数据行的结构",而并非指 "零成本地完成任务"
㈣ 数据库为什么要分库分表
1 基本思想之什么是分库分表?
从字面上简单理解,就是把原本存储于一个库的数据分块存储到多个库上,把原本存储于一个表的数据分块存储到多个表上。
2 基本思想之为什么要分库分表?
数
据库中的数据量不一定是可控的,在未进行分库分表的情况下,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地,数据操作,增
删改查的开销也会越来越大;另外,由于无法进行分布式式部署,而一台服务器的资源(CPU、磁盘、内存、IO等)是有限的,最终数据库所能承载的数据量、
数据处理能力都将遭遇瓶颈。
3 分库分表的实施策略。
分库分表有垂直切分和水平切分两种。
3.1
何谓垂直切分,即将表按照功能模块、关系密切程度划分出来,部署到不同的库上。例如,我们会建立定义数据库workDB、商品数据库payDB、用户数据
库userDB、日志数据库logDB等,分别用于存储项目数据定义表、商品定义表、用户数据表、日志数据表等。
3.2
何谓水平切分,当一个表中的数据量过大时,我们可以把该表的数据按照某种规则,例如userID散列,进行划分,然后存储到多个结构相同的表,和不同的库
上。例如,我们的userDB中的用户数据表中,每一个表的数据量都很大,就可以把userDB切分为结构相同的多个userDB:part0DB、
part1DB等,再将userDB上的用户数据表userTable,切分为很多userTable:userTable0、userTable1等,
然后将这些表按照一定的规则存储到多个userDB上。
3.3 应该使用哪一种方式来实施数据库分库分表,这要看数据库中数据量的瓶颈所在,并综合项目的业务类型进行考虑。
如果数据库是因为表太多而造成海量数据,并且项目的各项业务逻辑划分清晰、低耦合,那么规则简单明了、容易实施的垂直切分必是首选。
而
如果数据库中的表并不多,但单表的数据量很大、或数据热度很高,这种情况之下就应该选择水平切分,水平切分比垂直切分要复杂一些,它将原本逻辑上属于一体
的数据进行了物理分割,除了在分割时要对分割的粒度做好评估,考虑数据平均和负载平均,后期也将对项目人员及应用程序产生额外的数据管理负担。
在现实项目中,往往是这两种情况兼而有之,这就需要做出权衡,甚至既需要垂直切分,又需要水平切分。我们的游戏项目便综合使用了垂直与水平切分,我们首先对数据库进行垂直切分,然后,再针对一部分表,通常是用户数据表,进行水平切分。
4 分库分表存在的问题。
4.1 事务问题。
在执行分库分表之后,由于数据存储到了不同的库上,数据库事务管理出现了困难。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价;如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。
4.2 跨库跨表的join问题。
在执行了分库分表之后,难以避免会将原本逻辑关联性很强的数据划分到不同的表、不同的库上,这时,表的关联操作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表,结果原本一次查询能够完成的业务,可能需要多次查询才能完成。
4.3 额外的数据管理负担和数据运算压力。
额
外的数据管理负担,最显而易见的就是数据的定位问题和数据的增删改查的重复执行问题,这些都可以通过应用程序解决,但必然引起额外的逻辑运算,例如,对于
一个记录用户成绩的用户数据表userTable,业务要求查出成绩最好的100位,在进行分表之前,只需一个order
by语句就可以搞定,但是在进行分表之后,将需要n个order
by语句,分别查出每一个分表的前100名用户数据,然后再对这些数据进行合并计算,才能得出结果。