❶ Hello,密码学:第三部分,公钥密码(非对称密码)算法
在 《Hello,密码学:第二部分,对称密码算法》 中讲述了对称密码的概念,以及DES和AES两种经典的对称密码算法原理。既然有对称密码的说法,自然也就有非对称密码,也叫做公钥密码算法。 对称密码和非对称密码两种算法的本质区别在于,加密密钥和解密密钥是否相同 :
公钥密码产生的初衷就是为了解决 密钥配送 的问题。
Alice 给远方的 Bob 写了一封情意慢慢的信,并使用强悍的 AES-256 进行了加密,但她很快就意识到,光加密内容不行,必须要想一个安全的方法将加密密钥告诉 Bob,如果将密钥也通过网络发送,很可能被技术高手+偷窥癖的 Eve 窃听到。
既要发送密钥,又不能发送密钥,这就是对称密码算法下的“密钥配送问题” 。
解决密钥配送问题可能有这样几种方法:
这种方法比较高效,但有局限性:
与方法一不同,密钥不再由通信个体来保存,而由密钥分配中心(KDC)负责统一的管理和分配。 双方需要加密通信时,由 KDC 生成一个用于本次通信的通信密钥交由双方,通信双方只要与 KDC 事先共享密钥即可 。这样就大大减少密钥的存储和管理问题。
因此,KDC 涉及两类密钥:
领略下 KDC 的过程:
KDC 通过中心化的手段,确实能够有效的解决方法一的密钥管理和分配问题,安全性也还不错。但也存在两个显著的问题:
使用公钥密码,加密密钥和解密密钥不同,只要拥有加密密钥,所有人都能进行加密,但只有拥有解密密钥的人才能进行解密。于是就出现了这个过程:
密钥配送的问题天然被解决了。当然,解密密钥丢失而导致信息泄密,这不属于密钥配送的问题。
下面,再详细看下这个过程。
公钥密码流程的核心,可以用如下四句话来概述:
既然加密密钥是公开的,因此也叫做 “公钥(Public Key)” 。
既然解密密钥是私有的,因此也叫做 “私钥(Private Key) 。
公钥和私钥是一一对应的,称为 “密钥对” ,他们好比相互纠缠的量子对, 彼此之间通过严密的数学计算关系进行关联 ,不能分别单独生成。
在公钥密码体系下,再看看 Alice 如何同 Bob 进行通信。
在公钥密码体系下,通信过程是由 Bob 开始启动的:
过程看起来非常简单,但为什么即使公钥被窃取也没有关系?这就涉及了上文提到的严密的数学计算关系了。如果上一篇文章对称密钥的 DES 和 AES 算法进行概述,下面一节也会对公钥体系的数学原理进行简要说明。
自从 Diffie 和 Hellman 在1976年提出公钥密码的设计思想后,1978年,Ron Rivest、Adi Shamir 和 Reonard Adleman 共同发表了一种公钥密码算法,就是大名鼎鼎的 RSA,这也是当今公钥密码算法事实上的标准。其实,公钥密码算法还包括ElGamal、Rabin、椭圆曲线等多种算法,这一节主要讲述 RSA 算法的基本数学原理。
一堆符号,解释下,E 代表 Encryption,D 代表 Decryption,N 代表 Number。
从公式种能够看出来,RSA的加解密数学公式非常简单(即非常美妙)。 RSA 最复杂的并非加解密运算,而是如何生成密钥对 ,这和对称密钥算法是不太一样的。 而所谓的严密的数学计算关系,就是指 E 和 D 不是随便选择的 。
密钥对的生成,是 RSA 最核心的问题,RSA 的美妙与奥秘也藏在这里面。
1. 求N
求 N 公式:N = p × q
其中, p 和 q 是两个质数 ,而且应该是很大又不是极大的质数。如果太小的话,密码就容易被破解;如果极大的话,计算时间就会很长。比如 512 比特的长度(155 位的十进制数字)就比较合适。
这样的质数是如何找出来的呢? 需要通过 “伪随机数生成器(PRNG)” 进行生成,然后再判断其是否为质数 。如果不是,就需要重新生成,重新判断。
2. 求L
求 L 公式:L = lcm(p-1, q-1)
lcm 代表 “最小公倍数(least common multiple)” 。注意,L 在加解密时都不需要, 仅出现在生成密钥对的过程中 。
3. 求E
E 要满足两个条件:
1)1 < E < L
2)gcd(E,L) = 1
gcd 代表 “最大公约数(greatest common divisor)” 。gcd(E,L) = 1 就代表 “E 和 L 的最大公约数为1,也就是说, E 和 L 互质 ”。
L 在第二步已经计算出来,而为了找到满足条件的 E, 第二次用到 “伪随机数生成器(PRNG)” ,在 1 和 L 之间生成 E 的候选,判断其是否满足 “gcd(E,L) = 1” 的条件。
经过前三步,已经能够得到密钥对种的 “公钥:{E, N}” 了。
4. 求D
D 要满足两个条件:
1)1 < D < L
2)E × D mod L = 1
只要 D 满足上面的两个条件,使用 {E, N} 进行加密的报文,就能够使用 {D, N} 进行解密。
至此,N、L、E、D 都已经计算出来,再整理一下
模拟实践的过程包括两部分,第一部分是生成密钥对,第二部分是对数据进行加解密。为了方便计算,都使用了较小的数字。
第一部分:生成密钥对
1. 求N
准备两个质数,p = 5,q = 7,N = 5 × 7 = 35
2. 求L
L = lcm(p-1, q-1) = lcm (4, 6) = 12
3. 求E
gcd(E, L) = 1,即 E 和 L 互质,而且 1 < E < L,满足条件的 E 有多个备选:5、7、11,选择最小的 5 即可。于是,公钥 = {E, N} = {5, 35}
4. 求D
E × D mod L = 1,即 5 × D mod 12 = 1,满足条件的 D 也有多个备选:5、17、41,选择 17 作为 D(如果选择 5 恰好公私钥一致了,这样不太直观),于是,私钥 = {D, N} = {17, 35}
至此,我们得到了公私钥对:
第二部分:模拟加解密
明文我们也使用一个比较小的数字 -- 4,利用 RSA 的加密公式:
密文 = 明文 ^ E mod N = 4 ^ 5 mod 35 = 9
明文 = 密文 ^ D mod N = 9 ^ 17 mod 35 = 4
从这个模拟的小例子能够看出,即使我们用了很小的数字,计算的中间结果也是超级大。如果再加上伪随机数生成器生成一个数字,判断其是否为质数等,这个过程想想脑仁儿就疼。还好,现代芯片技术,让计算机有了足够的运算速度。然而,相对于普通的逻辑运算,这类数学运算仍然是相当缓慢的。这也是一些非对称密码卡/套件中,很关键的性能规格就是密钥对的生成速度
公钥密码体系中,用公钥加密,用私钥解密,公钥公开,私钥隐藏。因此:
加密公式为:密文 = 明文 ^ E mod N
破译的过程就是对该公式进行逆运算。由于除了对明文进行幂次运算外, 还加上了“模运算” ,因此在数学上, 该逆运算就不再是简单的对数问题,而是求离散对数问题,目前已经在数学领域达成共识,尚未发现求离散对数的高效算法 。
暴力破解的本质就是逐个尝试。当前主流的 RSA 算法中,使用的 p 和 q 都是 1024 位以上,这样 N 的长度就是 2048 位以上。而 E 和 D 的长度和 N 差不多,因此要找出 D,就需要进行 2048 位以上的暴力破解。即使上文那个简单的例子,算出( 蒙出 ) “9 ^ D mod 35 = 4” 中的 D 也要好久吧。
因为 E 和 N 是已知的,而 D 和 E 在数学上又紧密相关(通过中间数 L),能否通过一种反向的算法来求解 D 呢?
从这个地方能够看出,p 和 q 是极为关键的,这两个数字不泄密,几乎无法通过公式反向计算出 D。也就是说, 对于 RSA 算法,质数 p 和 q 绝不能被黑客获取,否则等价于交出私钥 。
既然不能靠抢,N = p × q,N是已知的,能不能通过 “质因数分解” 来推导 p 和 q 呢?或者说, 一旦找到一种高效的 “质因数分解” 算法,就能够破解 RSA 算法了 。
幸运的是,这和上述的“离散对数求解”一样,当下在数学上还没有找到这种算法,当然,也无法证明“质因数分解”是否真的是一个困难问题 。因此只能靠硬算,只是当前的算力无法在可现实的时间内完成。 这也是很多人都提到过的,“量子时代来临,当前的加密体系就会崩溃”,从算力的角度看,或许如此吧 。
既不能抢,也不能算,能不能猜呢?也就是通过 “推测 p 和 q 进行破解” 。
p 和 q 是通过 PRNG(伪随机数生成器)生成的,于是,又一个关键因素,就是采用的 伪随机数生成器算法要足够随机 。
随机数对于密码学极为重要,后面会专门写一篇笔记 。
前三种攻击方式,都是基于 “硬碰硬” 的思路,而 “中间人攻击” 则换了一种迂回的思路,不去尝试破解密码算法,而是欺骗通信双方,从而获取明文。具体来说,就是: 主动攻击者 Mallory 混入发送者和接收者之间,面对发送者伪装成接收者,面对接收者伪装成发送者。
这个过程可以重复多次。需要注意的是,中间人攻击方式不仅能够针对 RSA,还可以针对任何公钥密码。能够看到,整个过程中,公钥密码并没有被破译,密码体系也在正常运转,但机密性却出现了问题,即 Alice 和 Bob 之间失去了机密性,却在 Alice 和 Mallory 以及 Mallory 和 Bob 之间保持了机密性。即使公钥密码强度再强大 N 倍也无济于事。也就是说,仅仅依靠密码算法本身,无法防御中间人攻击 。
而能够抵御中间人攻击的,就需要用到密码工具箱的另一种武器 -- 认证 。在下面一篇笔记中,就将涉及这个话题。
好了,以上就是公钥密码的基本知识了。
公钥密码体系能够完美的解决对称密码体系中 “密钥配送” 这个关键问题,但是抛开 “中间人攻击” 问题不谈,公钥密码自己也有个严重的问题:
公钥密码处理速度远远低于对称密码。不仅体现在密钥对的生成上,也体现在加解密运算处理上。
因此,在实际应用场景下,往往会将对称密码和公钥密码的优势相结合,构建一个 “混合密码体系” 。简单来说: 首先用相对高效的对称密码对消息进行加密,保证消息的机密性;然后用公钥密码加密对称密码的密钥,保证密钥的机密性。
下面是混合密码体系的加解密流程图。整个体系分为左右两个部分:左半部分加密会话密钥的过程,右半部分是加密原始消息的过程。原始消息一般较长,使用对称密码算法会比较高效;会话密钥一般比较短(十几个到几十个字节),即使公钥密码算法运算效率较低,对会话密钥的加解密处理也不会非常耗时。
著名的密码软件 PGP、SSL/TLS、视频监控公共联网安全建设规范(GB35114) 等应用,都运用了混合密码系统。
好了,以上就是公钥密码算法的全部内容了,拖更了很久,以后还要更加勤奋一些。
为了避免被傻啦吧唧的审核机器人处理,后面就不再附漂亮姑娘的照片(也是为了你们的健康),改成我的摄影作品,希望不要对收视率产生影响,虽然很多小伙儿就是冲着姑娘来的。
就从喀纳斯之旅开始吧。
❷ 你好,随机数有规律吗毕竟程序也是人制造出来的!
随机数分两种:伪随机数和密码学随机数。伪随机数(rand)是有一定规律的,这主要和操作系统以及库函数有关,有人利用这种规律实现过攻击。密码学随机数的规律就很难找了,不过要使用密码学随机数往往需要特殊的硬件。
❸ 计算机程序可以产生真正的随机数吗不是random伪随机
光靠程序是无法实现真随机数的。要实现真正的随机数,必须有真正随机的种子。
在计算机中并没有一个真正的随机数发生器,但是可以做到使产生的数字重复率很低,这样看起来好象是真正的随机数,实现这一功能的程序叫伪随机数发生器。
有关如何产生随机数的理论有许多,如果要详细地讨论,需要厚厚的一本书的篇幅。不管用什么方法实现随机数发生器,都必须给它提供一个名为“种子”的初始值。而且这个值最好是随机的,或者至少这个值是伪随机的。“种子”的值通常是用快速计数寄存器或移位寄存器来生成的。
(3)密码学随机数扩展阅读:
随机数在密码学中非常重要,保密通信中大量运用的会话密钥的生成即需要真随机数的参与。如果一个随机数生成算法是有缺陷的,那么会话密钥可以直接被推算出来。若果真发生这种事故,那么任何加密算法都失去了意义。
密码学中大量利用伪随机数生成器的应用还有流密码。流密码的著名例子是RC4。流密码的原理是利用一个密码学安全的伪随机数生成器根据密钥产生一串密码学安全的伪随机比特列,再将消息与上述随机比特列按位异或运算。
❹ 什么是随机数及随机数种子,能不能详细通俗介绍一下
随机数在科学研究与工程实际中有着极其重要的应用!
简单来说,随机数就是一个数列,这个数列可能满足一定的概率分布,也许其满足的分布并不为我们所知。
不知道你是否知道一个经典的例子:“使用一根针和两条线求圆周率”(如果不知到你可以搜一下)。这个实验我们可以使用数学模拟(蒙特卡罗模拟)的方法来进行,这样可以最大限度的节约实验所消耗的时间(使用计算机),也在一定程度上剔除了人为因素的影响。但有一个前提必须考虑,就是模拟的随机性要好。怎样体现呢,这时就需要使用“好”的随机数来替代我们的物理实验。
据我所知,随机数在科学预测上有着非常重要的应用!还有密码学中,随机数也是基础之一。
数学方法产生随机数应该称之为“伪随机数”,只有使用物理方法才能得到真正的随机数!
为了得到数学上的伪随机数,我们就要研究“为随机数发生器”!
通常,0-1区间上的均匀随机数是基础的基础,因此,大量的工作是围绕它展开的!在此基础之上,又可以得到符合正态分布,beta分布等的伪随机数。
“种子”是什么呢?
经典的伪随机数发生器是这样的:
X(n+1)=
a
*
X(n)
+
b
显然通过上式我们能够得到一个数列,前提是X(0)应该给出,依次我们就可以算出X(1),X(2)...;当然不同的X(0)就会得到不同的数列。
可以说:“X(0)”就是种子。
对于一个应用级的伪随机数发生器,所有的“伪随机数”,均匀的分布于一个“轨道”上,几乎所有的数都可以做为种子。数字“0”,有时是一个特例,不能作为种子,当然它取决于你使用的随机数发生器!
呵呵,楼上说的言简意赅,但那个函数并不复杂,你可以搜一下“素数模伪随机数发生器”
X(n+1)=
a
*
X(n),
只不过这个a的确定不是太简单,要求随机性好(期望0.5,标准差1/12);周期长!
当然还有更好的发生器,周期可达2^6xxxx
-
1(具体的忘了)!
❺ 一到五随机数是什么
一到五随机数是1和4。
产生随机数有多种不同的方法。随机数最重要的特性是:它所产生的后面的那个数与前面的那个数毫无关系。一到五随机数是1和4。
用法:
随机数在密码学中非常重要,保密通信中大量运用的会话密钥的生成即需要真随机数的参与。如果一个随机数生成算法是有缺陷的,那么会话密钥可以直接被推算出来。若果真发生这种事故,那么任何加密算法都失去了意义。
密码学中大量利用伪随机数生成器的应用还有流密码。流密码的著名例子是RC4。流密码的原理是利用一个密码学安全的伪随机数生成器根据密钥产生一串密码学安全的伪随机比特列,再将消息与上述随机比特列按位异或运算。