导航:首页 > 编程大全 > 遗传算法与bp神经网络

遗传算法与bp神经网络

发布时间:2023-01-21 22:14:48

⑴ 遗传算法为什么可以优化bp神经网络

1、遗传算法优化BP神经网络是指优化神经网络的参数; 2、因此,对训练时间没有影响。

⑵ 对于预测方面,是马尔科夫链比较好,还是遗传算法优化bp神经网络比较好

1、遗传算法优化BP神经网络是指优化神经网络的参数;
2、因此,对训练时间没有影响。

⑶ 基于遗传算法的BP神经网络

源码地址: https://github.com/Grootzz/GA-BP
介绍:
利用遗传算法并行地优化BP网络的权值和阈值,从而避免了BP网络在优化权值和阈值时陷入局部最优的缺点

背景:
这个项目的背景为客运量和货运量的预测

文件介绍:

因为项目中用到了GAOT工具包中的函数,所以需要将GAOT工具包加入路径。
操作步骤为:点击GAOT文件--->添加到路径--->选定文件夹和子文件夹
这样,工程中就可以调用GAOT工具包中的函数了

源码地址: https://github.com/Grootzz/GA-BP

⑷ BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系

这四个都属于人工智能算法的范畴。其中BP算法、BP神经网络和神经网络
属于专神经网络这个大类。遗传属算法为进化算法这个大类。
神经网络模拟人类大脑神经计算过程,可以实现高度非线性的预测和计算,主要用于非线性拟合,识别,特点是需要“训练”,给一些输入,告诉他正确的输出。若干次后,再给新的输入,神经网络就能正确的预测对于的输出。神经网络广泛的运用在模式识别,故障诊断中。BP算法和BP神经网络是神经网络的改进版,修正了一些神经网络的缺点。
遗传算法属于进化算法,模拟大自然生物进化的过程:优胜略汰。个体不断进化,只有高质量的个体(目标函数最小(大))才能进入下一代的繁殖。如此往复,最终找到全局最优值。遗传算法能够很好的解决常规优化算法无法解决的高度非线性优化问题,广泛应用在各行各业中。差分进化,蚁群算法,粒子群算法等都属于进化算法,只是模拟的生物群体对象不一样而已。

⑸ matlab的遗传算法优化BP神经网络

^对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。
步骤:
未经遗传算法优化的BP神经网络建模
1、
随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。
2、
数据预处理:归一化处理。
3、
构建BP神经网络的隐层数,次数,步长,目标。
4、
使用训练数据input_train训练BP神经网络net。

⑹ 利用遗传算法优化的bp神经网络怎么画出误差与训练时间的变化

这个得靠你自己编程实现,没有现成的函数。具体流程如下:

  1. 初始化:将各个权值、阈值都作为实数编码,构成染色体,并产生初始种群;

  2. 选择、交叉、变异:注意各个概率和交叉方式;

  3. 检验:将染色体解码进神经网络,代入样本计算误差。可能你还可以使用最优个体保存策略。

  4. 循环迭代上述过程,直至误差满足条件。

将遗传算法的代数和误差记录下来,用plot函数就可以画出变化曲线了。

⑺ 关于遗传算法优化BP神经网络的问题

程序
1、未经遗传算法优化的BP神经网络建模
clear;
clc;
%%%%%%%%%%%%%输入参数%%%%%%%%%%%%%%
N=2000; %数据总个数
M=1500; %训练数据
%%%%%%%%%%%%%训练数据%%%%%%%%%%%%%%
for i=1:N
input(i,1)=-5+rand*10;
input(i,2)=-5+rand*10;
end
output=input(:,1).^2+input(:,2).^2;
save data input output

load data.mat

%从1到N随机排序
k=rand(1,N);
[m,n]=sort(k);
%找出训练数据和预测数据
input_train=input(n(1:M),:)';
output_train=output(n(1:M),:)';
input_test=input(n((M+1):N),:)';
output_test=output(n((M+1):N),:)';
%数据归一化
[inputn,inputs]=mapminmax(input_train);
[outputn,outputs]=mapminmax(output_train);
%构建BP神经网络
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;
%BP神经网络训练
net=train(net,inputn,outputn);
%测试样本归一化
inputn_test=mapminmax('apply',input_test,inputs);
%BP神经网络预测
an=sim(net,inputn_test);
%%网络得到数据反归一化
BPoutput=mapminmax('reverse',an,outputs);

figure(1)
%plot(BPoutput,':og');
scatter(1:(N-M),BPoutput,'rx');
hold on;
%plot(output_test,'-*');
scatter(1:(N-M),output_test,'o');
legend('预测输出','期望输出','fontsize',12);
title('BP网络预测输出','fontsize',12);
xlabel('样本','fontsize',12);
xlabel('优化前输出的误差','fontsize',12);

figure(2)
error=BPoutput-output_test;
plot(1:(N-M),error);
xlabel('样本','fontsize',12);
ylabel('优化前输出的误差','fontsize',12);
%save net net inputs outputs
2、遗传算法优化的BP神经网络建模
(1)主程序
%清空环境变量
clc
clear

%读取数据
load data.mat

%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;

%训练数据和预测数据
input_train=input(1:1500,:)';
input_test=input(1501:2000,:)';
output_train=output(1:1500)';
output_test=output(1501:2000)';

%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);

%构建网络
net=newff(inputn,outputn,hiddennum);

%% 遗传算法参数初始化
maxgen=10; %进化代数,即迭代次数
sizepop=30; %种群规模
pcross=[0.3]; %交叉概率选择,0和1之间
pmutation=[0.1]; %变异概率选择,0和1之间

%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;

lenchrom=ones(1,numsum);
bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据范围

%------------------------------------------------------种群初始化------------------------------%------------------

--------
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
%avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体
%初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound); %编码
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); %染色体的适应度
end

%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
%avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
%trace=[avgfitness bestfitness];

%% 迭代求解最佳初始阀值和权值
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
% avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,i,maxgen,bound);

% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);
end

%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

%avgfitness=sum(indivials.fitness)/sizepop;

% trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度

end
%% 遗传算法结果分析
%figure(3)
%[r c]=size(trace);
%plot([1:r]',trace(:,2),'b--');
%title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
%xlabel('进化代数');ylabel('适应度');
%legend('平均适应度','最佳适应度');
disp('适应度 变量');
x=bestchrom;

%% 把最优初始阀值权值赋予网络预测
% %用遗传算法优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x

(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);

net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;

%% BP网络训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;

%网络训练
[net,per2]=train(net,inputn,outputn);

%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;

%figure(4);
hold on;plot(1:500,error,'r');
legend('优化前的误差','优化后的误差','fontsize',12)

(2)编码子程序code.m
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end

(3)适应度函数fun.m
function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%该函数用来计算适应度值
%x input 个体
%inputnum input 输入层节点数
%outputnum input 隐含层节点数
%net input 网络
%inputn input 训练输入数据
%outputn input 训练输出数据
%error output 个体适应度值
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net=newff(inputn,outputn,hiddennum);
%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%网络训练
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));

(4)选择操作Select.m
function ret=select(indivials,sizepop)
% 该函数用于进行选择操作
% indivials input 种群信息
% sizepop input 种群规模
% ret output 选择后的新种群

%求适应度值倒数
[a bestch]=min(indivials.fitness);
%b=indivials.chrom(bestch);
%c=indivials.fitness(bestch);
fitness1=10./indivials.fitness; %indivials.fitness为个体适应度值

%个体选择概率
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;

%采用轮盘赌法选择新个体
index=[];
for i=1:sizepop %sizepop为种群数
pick=rand;
while pick==0
pick=rand;
end
for i=1:sizepop
pick=pick-sumf(i);
if pick<0
index=[index i];
break;
end
end
end
%index=[index bestch];
%新种群
indivials.chrom=indivials.chrom(index,:); %indivials.chrom为种群中个体
indivials.fitness=indivials.fitness(index);
%indivials.chrom=[indivials.chrom;b];
%indivials.fitness=[indivials.fitness;c];
ret=indivials;

(5)交叉操作cross.m
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体
for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;

(6)变异操作Mutation.m
function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)
% 本函数完成变异操作
% pcorss input : 变异概率
% lenchrom input : 染色体长度
% chrom input : 染色体群
% sizepop input : 种群规模
% opts input : 变异方法的选择
% pop input : 当前种群的进化代数和最大的进化代数信息
% bound input : 每个个体的上届和下届
% maxgen input :最大迭代次数
% num input : 当前迭代次数
% ret output : 变异后的染色体
for i=1:sizepop %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
%但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
% 随机选择一个染色体进行变异
pick=rand;
while pick==0
pick=rand;
end
index=ceil(pick*sizepop);
% 变异概率决定该轮循环是否进行变异
pick=rand;
if pick>pmutation
continue;
end
flag=0;
while flag==0
% 变异位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick*sum(lenchrom)); %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
pick=rand; %变异开始
fg=(rand*(1-num/maxgen))^2;
if pick>0.5
chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;
else
chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;
end %变异结束
flag=test(lenchrom,bound,chrom(i,:)); %检验染色体的可行性
end
end
ret=chrom;

⑻ c语言实现*/遗传算法改进BP神经网络原理和算法实现怎么弄

遗传算法有相当大的引用。遗传算法在游戏中应用的现状在遗传编码时, 一般将瓦片的坐标作为基因进行实数编码, 染色体的第一个基因为起点坐标, 最后一个基因为终点坐标, 中间的基因为路径经过的每一个瓦片的坐标。在生成染色体时, 由起点出发, 随机选择当前结点的邻居节点中的可通过节点, 将其坐标加入染色体, 依此循环, 直到找到目标点为止, 生成了一条染色体。重复上述操作, 直到达到指定的种群规模。遗传算法的优点:1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。遗传算法的缺点:遗传算法在进行编码时容易出现不规范不准确的问题。

⑼ 遗传算法为什么可以优化bp神经网络

阅读全文

与遗传算法与bp神经网络相关的资料

热点内容
php编程语言在哪里 浏览:302
矢量文件有哪些格式 浏览:790
文书档案长期保存的文件有哪些 浏览:945
如何把pdf文字复制粘贴到word文档 浏览:507
勤哲价格qinzheapp 浏览:709
腾讯小说下载的文件在哪里 浏览:106
js显示隐藏控件 浏览:119
共享上的文件内容误删如何找回 浏览:600
双十一网络营销分析 浏览:634
win10的areo怎么关 浏览:40
阿城区如何办理电信网络 浏览:622
中国移动流量代码 浏览:364
厂里编程叫什么 浏览:96
win10我的世界主题包 浏览:34
哪个城市需要编程的企业多 浏览:758
linuxfprintf 浏览:58
如何把自己的手机在转转app上卖掉 浏览:641
医疗系统编程学什么专业 浏览:634
北京网络seo优化什么价格 浏览:776
win7文件夹声音 浏览:178

友情链接