㈠ 福昕阅读器如何连接扫描仪
开蓝牙连接。

基本原理及组成部件
基本原理
利用光感器件,将检测到的光信号转换成电信号,再将电信号通过模拟/数字(A/D)转换器转化为数字信号,传输到计算机就中。
光电转换部件
完成光电转换的部件是感光器件,它是扫描仪的核心,其光电转换特性,如光谱相应、光的稳定性、灵敏度、噪声等,对图像信息传递很重要。
① CCD(Charge Coupled Device)
CCD的中文名称是电荷耦合器件,与一般的半导体集成电路相似,它在一块硅单晶上集成了成千上万个光电三极管,这些光电三极管分成三列,分别被红、绿、蓝色的滤色镜罩住,从而实现彩色扫描。
光电三极管在受到光线照射时可产生电流,经放大后输出。采用CCD的扫描仪技术经多年的发展已相当成熟,是市场上主流扫描仪主要采用的感光元件。
CCD的优势在于,经它扫描的图像质量较高,具有一定的景深,能扫描凹凸不平的物体;温度系数较低,对于一般的工作,周围环境温度的变化可以忽略不计。
CCD的缺点有:由于组成CCD的数千个光电三极管的距离很近(微米级),在各光电三极管之间存在着明显的漏电现象,各感光单元的信号产生的干扰降低了扫描仪的实际清晰度。
由于采用了反射镜、透镜,会产生图像色彩偏差和像差,需要用软件校正;由于CCD需要一套精密的光学系统,故扫描仪体积难以做得很小。
以上内容参考:网络-扫描仪
㈡ 芯片的单位是片还是个
芯片的单位是片,通常用PCS
㈢ 手机直播转换器求推荐
第一,如果你是小白刚准备入手设备,又不想花钱太多,你可以直接用手机声卡。操作简单,快速上手,价格便宜。
手机声卡推荐so8,自带48伏供电,可以使用电容话筒
第二,如果你对音质有一定要求,还不想麻烦,可以买一块直接连接手机直播的电脑声卡,比如高端娱乐声卡m8,艾肯的live系列,跳羚k4等
第三就是专业电脑声卡搭配转换器的方案,可以选择rme,羚羊,阿波罗这样中高端声卡,强烈建议选择纯数字的转换器,支持纯数字转换器的可以选择绅娱D/ D-3,纯数字可以无损的传播音频,如果接受有点损失,可以选择第二代的直播一号,so8

㈣ a/d转换器功能介绍
Au002FD转换的作用是将时间连续、幅值连续的模拟量转换为时间离散、幅值也离散的数字信号。以下是Au002FD转换器的(4)安卓版单精数字转换器扩展阅读:1、Au002FD转换器的介绍:在仪器仪表系统中常常需要将检测到的连续变化的模拟量如:温度、压力、流量、速度、光强等转变成离散的数字量才能输入到计算机中进行处理。这些模拟量经过传感器转变成电信号(一般为电压信号)经过放大器放大后就需要经过一定的处理变成数字量。实现模拟量到数字量转变的设备通常称为模数转换器(ADC)简称Au002FD。2、Au002FD转换器的原理:Au002FD转换一般要经过取样、保持、量化及编码4个过程。在实际电路中这些过程有的是合并进行的例如取样和保持量化和编码往往是在转换过程中同时实现。
㈤ 转换器(A/D转换器)详细资料大全
将模拟信号转换成数位讯号的电路,称为模数转换器(简称a/d转换器或adc, *** og to digital converter),A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数位讯号,因此,A/D转换一般要经过取样、保持、量化及编码4个过程。在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。
基本介绍
转换器分类,主要技术指标,DA转换器,一位DA转换器,
转换器分类
下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。
转换器 1)积分型(如TLC7135) 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高解析度,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如TLC0831) 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低解析度(12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Halfflash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 4)Σ-Δ(Sigma?/FONT>delta)调制型(如AD7705) Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高解析度。主要用于音频和测量。 5)电容阵列逐次比较型 电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列DA转换器中多数电阻的值必须一致,在单晶片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。 6)压频变换型(如AD650) 压频变换型(Voltage-FrequencyConverter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的解析度几乎可以无限增加,只要采样的时间能够满足输出频率解析度要求的累积脉冲个数的宽度。其优点是解析度高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。
主要技术指标
1)解析度(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2的n次方的比值。解析度又称精度,通常以数位讯号的位数来表示。 2)转换速率(ConversionRate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(SampleRate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps和Msps,表示每秒采样千/百万次(kilo/MillionSamplesperSecond)。 3)量化误差(QuantizingError)由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。 4)偏移误差(OffsetError)输入信号为零时输出信号不为零的值,可外接电位器调至最小。 5)满刻度误差(FullScaleError)满度输出时对应的输入信号与理想输入信号值之差。 6)线性度(Linearity)实际转换器的转移函式与理想直线的最大偏移,不包括以上三种误差。 其他指标还有:绝对精度(AbsoluteAuracy),相对精度(RelativeAuracy),微分非线性,单调性和无错码,总谐波失真(TotalHarmonicDistotortion缩写THD)和积分非线性。
DA转换器
DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。按数字输入值切换开关,产生比例于输入的电流(或电压)。此外,也有为了改善精度而把恒流源放入器件内部的。一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器。此外,电压开关型电路为直接输出电压型DA转换器。 1)电压输出型(如TLC5620) 电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内置输出放大器以低阻抗输出。直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟,故常作为高速DA转换器使用。 2)电流输出型(如THS5661A) 电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOSDA转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了达算放入器的延迟,使回响变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。 3)乘算型(如AD7533) DA转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数位化地衰减的衰减器及对输入信号进行调制的调制器使用。
一位DA转换器
一位DA转换器与前述转换方式全然不同,它将数字值转换为脉冲宽度调制或频率调制的输出,然后用数字滤波器作平均化而得到一般的电压输出(又称位流方式),用于音频等场合。 4.DA转换器的主要技术指标: 1)分辩率(Resolution)指最小模拟输出量(对应数字量仅最低位为‘1’)与最大量(对应数字量所有有效位为‘1’)之比。 2)建立时间(SettingTime)是将一个数字量转换为稳定模拟信号所需的时间,也可以认为是转换时间。DA中常用建立时间来描述其速度,而不是AD中常用的转换速率。一般地,电流输出DA建立时间较短,电压输出DA则较长。 其他指标还有线性度(Linearity),转换精度,温度系数/漂移。
㈥ ccd相机数据线有什么用
CCD在摄像机里是一个极其重要的部件,它起到将光线转换成电信号的作用,类似于人的眼睛,因此其性能的好坏将直接影响到摄像机的性能。
CCD的作用就像胶片一样,但它是把光信号转换成电荷信号。CCD上有许多排列整齐的光电二极管,能感应光线,并将光信号转变成电信号,经外部采样放大及模数转换电路转换成数字图像信号。

CCD相机与CMOS相机的区别:
1、成像过程
CCD与CMOS图像传感器光电转换的原理相同,他们最主要的差别在于信号的读出过程不同;由于CCD仅有一个(或少数几个)输出节点统一读出,其信号输出的一致性非常好。
而CMOS芯片中,每个像素都有各自的信号放大器,各自进行电荷-电压的转换,其信号输出的一致性较差。
但是CCD为了读出整幅图像信号,要求输出放大器的信号带宽较宽,而在CMOS芯片中,每个像元中的放大器的带宽要求较低,大大降低了芯片的功耗,这就是CMOS芯片功耗比CCD要低的主要原因。
2、集成性
从制造工艺的角度看,CCD中电路和器件是集成在半导体单晶材料上,工艺较复杂,CCD仅能输出模拟电信号,需要后续的地址译码器、模拟转换器、图像信号处理器处理,并且还需要提供三组不同电压的电源同步时钟控制电路,集成度非常低。
而CMOS是集成在被称作金属氧化物的版单体材料上,这种工艺与生产数以万计的计算机芯片和存储设备等半导体集成电路的工艺相同,因此生产CMOS的成本相对CCD低很多。
同时CMOS芯片能将图像信号放大器、信号读取电路、A/D转换电路、图像信号处理器及控制器等集成到一块芯片上,只需一块芯片就可以实现相机的的所有基本功能,集成度很高,芯片级相机概念就是从这产生的。
3、速度
CCD采用逐个光敏输出,只能按照规定的程序输出,速度较慢。CMOS有多个电荷-电压转换器和行列开关控制,读出速度快很多,大部分500fps以上的高速相机都是CMOS相机。此外CMOS的地址选通开关可以随机采样,实现子窗口输出,在仅输出子窗口图像时可以获得更高的速度。
4、噪声
CCD技术发展较早,比较成熟,采用PN结或二氧化硅(SiO2)隔离层隔离噪声,成像质量相对CMOS光电传感器有一定优势。
㈦ 怎样才可以放心购买芯片呢
如果想要买到质量好的芯片,我觉得可以去芯查查移动端商城,那里的芯片性价比都挺高的。
㈧ 数模转换器详细资料大全
数模转换器,又称D/A转换器,简称DAC,它是把数字量转变成模拟的器件。D/A转换器基本上由4个部分组成,即权电阻网路、运算放大器、基准电源和模拟开关。模数转换器中一般都要用到数模转换器,模数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散的数位讯号的器件。
基本介绍
- 中文名 :数模转换器
- 简称 :DAC
- 模数转换器 :即A/D转换器
- 输出最小电压 :-12V
概念,常见方式,构成和特点,采样率,数字输出选择,性能指标,解析度,线性度,转换精度,转换速度,温度系数,电源抑制比,工作温度范围,失调误差,增益误差,非线性误差,转换方式,并行数模转换,串列数模转换,转换原理,分类,精度位数,
概念
一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,简称 DAC
数模转换器 或D/A 转换器。
常见方式
最常见的数模转换器是将并行二进制的数字量转换为直流电压或直流电流,它常用作过程控制计算机系统的输出通道,与执行器相连,实现对生产过程的自动控制。数模转换器电路还用在利用反馈技术的模数转换器设计中。
构成和特点
DAC主要由数字暂存器、模拟电子开关、位权网路、求和运算放大器和基准电压源(或恒流源)组成。用存于数字暂存器的数字量的各位数码,分别控制对应位的模拟电子开关,使数码为1的位在位权网路上产生与其位权成正比的电流值,再由运算放大器对各电流值求和,并转换成电压值。 根据位权网路的不同,可以构成不同类型的DAC,如权电阻网路DAC、R–2R倒T形电阻网路DAC和单值电流型网路DAC等。权电阻网路DAC的转换精度取决于基准电压VREF,以及模拟电子开关、运算放大器和各权电阻值的精度。它的缺点是各权电阻的阻值都不相同,位数多时,其阻值相差甚远,这给保证精度带来很大困难,特别是对于积体电路的制作很不利,因此在集成的DAC中很少单独使用该电路。 它由若干个相同的R、2R网路节组成,每节对应于一个输入位。节与节之间串接成倒T形网路。R–2R倒T形电阻网路DAC是工作速度较快、套用较多的一种。和权电阻网路比较,由于它只有R、2R两种阻值,从而克服了权电阻阻值多,且阻值差别大的缺点。 电流型DAC则是将恒流源切换到电阻网路中,恒流源内阻极大,相当于开路,所以连同电子开关在内,对它的转换精度影响都比较小,又因电子开关大多采用非饱和型的ECL开关电路,使这种DAC可以实现高速转换,转换精度较高。
采样率
模拟信号在时域上是连续的,因此可以将它转换为时间上连续的一系列数位讯号。这样就要求定义一个参数来表示新的数位讯号采样自模拟信号速率。这个速率称为转换器的采样率(samplingrate)或采样频率(samplingfrequency)。 可以采集连续变化、频宽受限的信号(即每隔一时间测量并存储一个信号值),然后可以通过插值将转换后的离散信号还原为原始信号。这一过程的精确度受量化误差的限制。然而,仅当采样率比信号频率的两倍还高的情况下才可能达到对原始信号的忠实还原,这一规律在采样定理有所体现。 由于实际使用的模拟数字转换器不能进行完全实时的转换,所以对输入信号进行一次转换的过程中必须通过一些外加方法使之保持恒定。常用的有采样-保持电路,在大多数的情况里,通过使用一个电容器可以存储输入的模拟电压,并通过开关或门电路来闭合、断开这个电容和输入信号的连线。许多模拟数字转换积体电路在内部就已经包含了这样的采样-保持子系统。
数字输出选择
1.高端仪表促进了更快的ADC速度和更多的通道数与密度,设计者必须评估转换器的输出格式,以及基本的转换性能。 2.主要的输出选项是CMOS(互补金属氧化物半导体)、LVDS(低压差分信令),以及CML(电流模式逻辑)。 3.要考虑的问题包括:功耗、瞬变、数据与时钟的变形,以及对噪声的抑制能力。 4.对于布局的考虑也是转换输出选择中的一个方面,尤其当采用LVDS技术时。 当设计者有多种ADC选择时,他们必须考虑采用哪种类型的数字数据输出:CMOS(互补金属氧化物半导体)、LVDS(低压差分信令),还是CML(电流模式逻辑)。ADC中所采用的每种数字输出类型都各有优缺点,设计者应结合自己的套用来考虑。这些因素取决于ADC的采样速率与解析度、输出数据速率,以及系统设计的功率要求,等等。
性能指标
D/A转换器的主要特性指标包括以下几方面:
解析度
指最小输出电压(对应的输入数字量只有最低有效位为“1”)与最大输出电压(对应的输入数字量所有有效位全为“1”)之比。如N位D/A转换器,其解析度为1/(2^N-1)。在实际使用中,表示解析度大小的方法也用输入数字量的位数来表示。
线性度
用非线性误差的大小表示D/A转换的线性度。并且把理想的输入输出特性的偏差与满刻度输出之比的百分数定义为非线性误差。
转换精度
D/A转换器的转换精度与D/A转换器的集成晶片的结构和接口电路配置有关。如果不考虑其他D/A转换误差时,D/A的转换精度就是解析度的大小,因此要获得高精度的D/A转换结果,首先要保证选择有足够解析度的D/A转换器。同时D/A转换精度还与外接电路的配置有关,当外部电路器件或电源误差较大时,会造成较大的D/A转换误差,当这些误差超过一定程度时,D/A转换就产生错误。 在D/A转换过程中,影响转换精度的主要因素有失调误差、增益误差、非线性误差和微分非线性误差。
转换速度
转换速度一般由建立时间决定。从输入由全0突变为全1时开始,到输出电压稳定在FSR±½LSB范围(或以FSR±x%FSR指明范围)内为止,这段时间称为建立时间,它是DAC的最大回响时间,所以用它衡量转换速度的快慢。
温度系数
在满刻度输出的条件下,温度每升高1℃,输出变化的百分数定义为温度系数。
电源抑制比
对于高质量的D/A转换器,要求开关电路及运算放大器所用的电源电压发生变化时,对输出电压影响极小。通常把满量程电压变化的百分数与电源电压变化的百分数之比称为电源抑制比。
工作温度范围
一般情况下,影响D/A转换精度的主要环境和工作条件因素是温度和电源电压变化。由于工作温度会对运算放大器加权电阻网路等产生影响,所以只有在一定的工作范围内才能保证额定精度指标。 较好的D/A转换器的工作温度范围在-40℃~85℃之间,较差的D/A转换器的工作温度范围在0℃~70℃之间。多数器件其静、动态指标均 在25℃的工作温度下测得的,工作温度对各项精度指标的影响用温度系数来描述,如失调温度系数、增益温度系数、微分线性误差温度系数等。
失调误差
失调误差(或称零点误差)定义为数字输入全为0码时,其模拟输出值与理想输出值之偏差值。对于单极性D/A转换,模拟输出的理想值为零伏点。对于双极性D/A转换,理想值为负域满量程。偏差值的大小一般用LSB的份数或用偏差值相对满量程的百分数来表示。
增益误差
D/A转换器的输入与输出传递特性曲线的斜率称为D/A转换增益或标度系数,实际转换的增益与理想增益之间的偏差称为增益误差(或称标度误差)。增益误差在消除失调误差后用满码。 输入时其输出值与理想输出值(满量程)之间的偏差表示,一般也用LSB的份数或用偏差值相对满量程的百分数来表示。
非线性误差
D/A转换器的非线性误差定义为实际转换特性曲线与理想特性曲线之间的最大偏差,并以该偏差相对于满量程的百分数度量。在转换器电路设计中,一般要求非线性误差不大于±1/2LSB。
转换方式
并行数模转换
数模转换有两种转换方式:并行数模转换和串列数模转换。图1为典型的并行数模转换器的结构。虚线框内的数码操作开关和电阻网路是基本部件。图中装置通过一个模拟量参考电压和一个电阻梯形网路产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。所谓“权”,就是二进制数的每一位所代表的值。例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位是21/23=1/4;第3位是22/23=1/2。位数多的依次类推。图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。几路电流之和经过反馈电阻Rf产生输出电压。电压极性与参考量相反。输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的解析度。位数越多解析度就越高,转换的精度也越高。工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。
串列数模转换
串列数模转换是将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。 随着数位技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数位讯号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数位讯号之间起桥梁作用的电路--模数和数模转换器。 将模拟信号转换成数位讯号的电路,称为模数转换器(简称A/D转换器或ADC,Analog to Digital Converter);将数位讯号转换为模拟信号的电路称为数模转换器(简称D/A转换器或DAC,Digital to Analog Converter);A/D转换器和D/A转换器已成为计算机系统中不可缺少的接口电路。 为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。 随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。本章将介绍几种常用A/D与D/A转换器的电路结构、工作原理及其套用。
转换原理
数字量是用
代码按数位组合起来表示的,对于有权码,每位代码都有一定的位权。为了将数字量转换成模拟量,必须将每1位的代码按其位权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的总模拟量,从而实现了数字—模拟转换。这就是组成D/A转换器的基本指导思想。 图11.1.1表示了4位二进制数字量与经过D/A转换后输出的电压模拟量之间的对应关系。 由图11.1.1还可看出,两个相邻数码转换出的电压值是不连续的,两者的电压差由最低码位代表的位权值决定。它是信息所能分辨的最小量,也就是我们所说的用1LSB(Least Significant Bit)表示。对应于最大输入数字量的最大电压输出值(绝对值),用FSR(Full Scale Range)表示。 D/A转换器由数码暂存器、模拟电子开关电路、解码网路、求和电路及基准电压几部分组成。数字量以串列或并行方式输入、存储于数码暂存器中,数字暂存器输出的各位数码,分别控制对应位的模拟电子开关,使数码为1的位在位权网路上产生与其权值成正比的电流值,再由求和电路将各种权值相加,即得到数字量对应的模拟量。
分类
按解码网路结构不同 T型电阻网路D/A转换器 倒T型电阻网路D/A转换器权电流D/A转换器
相关示图 权电阻网路D/A转换器 按模拟电子开关电路的不同 CMOS开关型D/A转换器(速度要求不高) 双极型开关D/A转换器 电流开关型(速度要求较高) ECL电流开关型(转换速度更高)
精度位数
如果CCD的质量能够满足一定色彩位数的要求,为了获得相应的输出效果,就要求有相应位数的数模转换实现数据采样,才能获得满意的效果,如果CCD可以实现36位精度,却使用了三个8位的数模转换器,结果输出出来就只剩下24位的数据精度了,这对于CCD是一种浪费,而如果使用三个16位的数模转换器,是实现了48位的数据输出,但效果与36位比较并无改善,对数模转换器就是一种浪费了。 1. 数模转换器是将数位讯号转换为模拟信号的系统,一般用低通滤波即可以实现。数位讯号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。 根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数位讯号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函式)的乘积。这样,用Sa函式的倒数作为频谱特性补偿,由数位讯号便可恢复为采样信号。由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。 一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函式和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。 2. 模数转换器是将模拟信号转换成数位讯号的系统,是一个滤波、采样保持和编码的过程。 模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器, 使得阶梯状信号中的各个电平变为二进制码。 3. 比较器是将两个相差不是很小的电压进行比较的系统。最简单的比较器就是运算放大器。 我们知道,运算放大器在连有深度负反馈的条件下,会线上性区工作,有着增益很大的放大特性,在计算时往往认为它放大的倍数是无穷大。而在没有反馈的条件下,运算放大器线上性区的输入动态范围很小,即两个输入电压有一定差距就会使运算放大器达到饱和。如果同相端电压较大,则输出最大电压,一般是+12V;如果反相端电压较大,则输出最小电压,一般是-12V。这样,就实现了电压比较功能。 真正的电压比较器还会增加一些外围辅助电路,加强性能。
㈨ 数码相机中的两种图像传感器CCD和CMOS的区别是什么
CCD和CMOS的区别:能耗不同,特点不同。
一、能耗不同:
CMOS通常消耗很少的能量,嵌入CMOS中的传感器是低消耗的传感器。
CCD的工序消耗的能量较多,CCD消耗的能量是同等CMOS传感器的100倍。
二、特点不同:
CMOS芯片可以在任何一条标准的硅生产线上制造,所以与CCD传感器相比它们要便宜得多。
CCD传感器投入量产的时间更长,因此更加成熟。它们的质量更高、像素更多。

应用
CCD广泛应用在数码摄影、天文学,尤其是光学遥测技术、光学与频谱望远镜,和高速摄影技术如Lucky imaging。CCD在摄像机、数码相机和扫描仪中应用广泛,只不过摄像机中使用的是点阵CCD,即包括x、y两个方向用于摄取平面图像,而扫描仪中使用的是线性CCD,它只有x一个方向,y方向扫描由扫描仪的机械装置来完成。
以上内容参考:网络-CCD感光元件
㈩ 安卓gba模拟器金手指的转换器AR Crypt.exe应该怎么用
只需去掉:号就行了